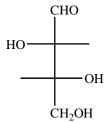
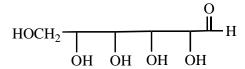

1. Classify the each of the following pairs of structures as identical, constitutional isomers, enantiomers, diastereomers, or unrelated (3 points each)


- \	α	\cap tt
a)	CH	$_{3}OH$

b)
$$CH_3$$
 CH_3

c)
$$H$$
 CH_3 CH_3



h)

2. Write the structures of the two simplest alcohols that are constitutional isomers. (6 points)

3. Consider the following sugar (open form): (9 points)

a) Put an asterisk (*) next to each stereocenter.

b) How many stereoisomers are possible for this compound? _____

c) How many pairs of enantiomers are possible for this compound? _____

4. Write the structure of any: (8 points)

aldotetrose -

ketopentose -

5. If fewer than 0.05% of all galactose molecules are in their open-chain form at equilibrium in water, how can galactose give a strong, positive Tollens' test? (5 points)

6. Draw the methyl glycoside of: (6 points)

Is it an alpha or beta glycoside?

7. How do amylose, amylopectin, and cellulose differ structurally? (9 points)

8.	Draw	structures	of the	products:	(12	points)
----	------	------------	--------	-----------	-----	---------

a)
$$CH_3(CH_2)_7CH=CH(CH_2)_7CO_2H + NaOH \longrightarrow$$

b)
$$CH_3(CH_2)_7CH=CH(CH_2)_7CO_2H + H_2$$
 \xrightarrow{Ni} $\xrightarrow{catalyst}$

c)
$$CH_3(CH_2)_7CH=CH(CH_2)_7CO_2H + CH_3OH \xrightarrow{H^+ \text{catalyst}}$$

10. Phosphotides are a type of ______. How do they differ from the neutral fats described in question 9? (9 points) You can use a picture in your answer if you'd like.

11. Describe the basic structure and composition of the cell membrane. (5 points)