
Chapter 3 – Composition of Substances and Solutions 

This chapter addresses two basic concepts: 1) the masses of molecules and salts at both the 

atomic and macroscopic levels and 2) the number relationship between reacting species.  Read Section 

3.1 on your own.  We’ll return to all of its content later in the notes. 

 

3.1 Formula Mass and the Mole Concept 

As you’ve already surmised, on the macroscopic scale the amu is as inconvenient as the gram is 

at the atomic scale, so we use the gram for “normal” scale situations.  However, it would be 

convenient to be able to move easily between these scales.  The conversion factor 6.022 x 1023 allows 

for such easy movement. 

As your book observes, even small amounts of material contain unimaginably large numbers of 

atoms.  For example, one teaspoon of water holds 1023 molecules.  If you can see it, a sample of 

anything contains at least a million, million, million molecules.  For that reason, a collective term 

was developed.  The mole contains 6.022 x 1023 items (Avogadro’s number).  Memorize this value.  

The mole is similar to the dozen (12 items) and gross (144 items) in that it is a counting term.  

Technically, a mole contains the number of atoms in exactly 12 g of 12C.  Remember that “exactly” 

means there is no error in this number.  Using the g/amu conversion factor means if one carbon-12 

atom weighs exactly 12 amu, then one mole of 12C weighs exactly 12 g.  Therefore, one chooses the 

mass units based on the scale one works on.  This is why the periodic table does not have units next 

to the masses. 

Your book begins with formula masses in this section (p. 132), then later discusses molar masses 

(p. 135).  In real life though, “formula mass” is rarely used and the molar mass does double duty; in 
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fact we usually say molecular weight (MW) even though this term is technically incorrect.  All can 

be thought of as the sum of the masses of the atoms that compose one unit of a material.  Thus, for 

glucose, C6H12O6: 

MWglucose = (6 atoms𝐶)(
12.011 amu

atom𝐶
)  +  (12 atoms𝐻)(

1.0079 amu

atom𝐻
) + (6 atoms𝑂)(

15.9994 amu

atom𝑂
) 

  =180.157 amu 

Note that I don’t round off to the tenths place like the book does in all of its examples.  You 

shouldn’t either for two reasons: 1) with calculators it isn’t worth the trouble and 2) in some cases, 

you may make a significant figure error. 

Example: How many moles of glucose, C6H12O6, are in 1.00 g?  How many molecules?  How 

many carbon atoms? 

 MWC6H12O6 = 180.157 amu/molecule → MWC6H12O6 = 180.157 g/mole  

 molC6H12O6 = (1.00 g) (
1 mol

180.157  g
) = 5.55 x 10-3 mol 

 moleculesC6H12O6 = (1.00 g g) (
1 mol

180.157  g
) (

6.022 x 1023 molecules

mol
)  

  = 3.34 x 1021 molecules 

 atomsC = (1.00 g) (
1 mol

180.157  g
) (

6.022 x 1023 molecules

mol
) (

6 atoms𝐶

molecule
)  

   = 2.00 x 1022 atomsC 

When discussing materials, be careful to think about what is really being asked for in the 

text.  In particular, if nitrogen is listed as a product of reaction, what is typically meant is 

molecular nitrogen, or N2, not atomic nitrogen (N).  There is similar ambiguity in other materials 

(e.g. oxygen and chlorine) and you should learn to anticipate what is expected in these situations. 
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3.2 Determining Empirical and Molecular Formulas  

Percent composition is a common and very useful calculation in chemistry.  It provides the 

elemental composition as the percent of total molecular weight.  When a new compound is prepared, 

its elemental composition is usually determined.  The following calculation provides the expected 

composition based on molecular formula.  For glucose: 

%C = 
(6 atoms𝐶)(

12.011 amu

atom𝐶
)

180.157 amu
 x 100%  =  40.00% 

  %H =  
(12 atoms𝐻)(

1.0079 amu

atom𝐻
)

180.157 amu
 x 100% = 6.71% 

  %O = 
(6 atom𝑂)(

15.9994  amu

atom𝑂
)

180.157 amu
 x 100%=   53.28% 

   99.99% 

There are three points worth noting here: (1) Substituting grams for amu gives exactly the same 

numerical answers.  Use whichever unit the problem requires.  (2) You should add the percentages 

together and make sure they total 100%  0.02%.  There will frequently be a very small deviation 

from 100% because of rounding, but it should never be much larger than a couple hundredths of a 

percent. (3) By convention, percent composition is almost always reported to a maximum accuracy 

of hundredths of a percent, even though the calculation may be more accurate.  This is because percent 

composition calculations are usually used in the determination of the identity of unknown materials.  

It is quite difficult to obtain materials more than 99.9% pure and, combined with experimental error 

in making the measurements, hundredths of a percent does quite well for almost all purposes. 

Unlike many calculations you do, this is one which is done in the reverse direction as often as 

the forward direction.  That is, we often start with the percentages and try to determine the number 
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of atoms of each element present.  For example, we can burn a sample containing C & H and collect 

and weigh the CO2 & H2O produced.  From their weights, the amount of C and H in the original 

sample can be determined.  Similar experiments are performed for other elements.  Using elemental 

analysis percentages allows one to calculate the empirical formula of a compound.   

The empirical formula presents the relative number of each kind of atom in the compound.  In 

contrast, the molecular formula presents the actual number of atoms in the compound.  For example, 

glucose has a molecular formula of C6H12O6, while it has an empirical formula of CH2O.  This 

distinction is important.  If you burn formaldehyde (CH2O) and glucose, they yield the same 

percentages of C, H, and O, so they yield the same empirical formula, yet are clearly very different 

materials. 

The calculation follows the following steps:  

1) Confirm the percentages total to 100%. 

2) Assume there are 100 g of compound present.  (Then the amount of each element present in 

grams will equal the percentage of that element present.) 

3) Calculate the number of moles present of each element.  (Make sure to use the element in 

elemental form (e.g. oxygen as 15.9994 g/mol not 31.9998 g/mol). 

4) Calculate the molar ratios, dividing by the element with the smallest number of moles 

present.  (Retain units throughout the process.) 

Example: An unknown compound is found to be composed of 40.0% carbon, 6.7% hydrogen, and 

53.3% oxygen.  Its molecular weight was measured as 180 g/mol.  What are its 

empirical and molecular formulas? 

molC = (40.0 gC)(
1 mol𝐶

12.011 g𝐶

) = 3.33 molC 
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molH = (6.7 gH)(
1 mol𝐻

1.0079 g𝐻

) = 6.65 molH 

molO = (53.3 gO)(
1 mol𝑂

15.9994 g𝑂

) = 3.33 molO 

molar ratios: 

C: 
3.33 mol𝐶

3.33 mol𝐶
 = 1.00 

H:  
6.65 mol𝐻

3.33 mol𝐶
 = 2.00 molH per molC 

O:  
3.33 mol𝑂

3.33 mol𝐶
 = 1.00 molO per molC 

The empirical formula is CH2O. 

Note that with one exception, all of the numbers in this example have units.  Be careful in 

rounding the molar ratios.  You should round numbers very close to integers (e.g. 0.97 rounds to 1), 

but numbers close to 0.25, 0.33, and 0.5 should be treated differently.  In these cases, all ratios are 

multiplied by a factor to yield whole number values.  E.g. a compound has the following ratios: Fe 

= 1.00, O = 1.33 oxygen atoms per iron atom.  Multiply through by 3 to get Fe3O4. 

If you also have the molecular weight of the material, you can determine the molecular formula.  

When going from empirical formula to molecular formula, all of the subscripts are multiplied by a 

whole number.  This is the only time it is permissible to change the subscripts on a formula. 

Example: In the previous problem you were told the molecular weight was about 180 g/mol, you 

calculate the molecular formula as follows: 

 The empirical weight of CH2O is 30 g/mol. 

 
MW

EW
 = 

180 g/mol

30 g/mol
 = 6.0   
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 Thus, there are 6 empirical units in each molecule  C6H12O6 

 

3.3 Molarity 

Recall from Chapter 1 that a solution is a homogeneous mixture at both the macroscopic and 

microscopic levels.  A solvent is the liquid present in largest quantity in a liquid solution.  All other 

materials are dissolved in the solvent and are called solutes.  In aqueous solution, the solvent is 

water.   Aqueous means “dissolved in water.” 

The composition of a solution is most frequently described in terms of concentration.  

Concentration is the amount of one material dissolved in a second material.  The most common and 

important unit for describing the concentration of a solution is molarity.  The unit of molarity is 

moles of solute per liter of solution and is abbreviated “M.”  Placing the dissolved species in square 

brackets also means molar concentration (see below).  Note that the volume of solution is used, not 

concentration =   
moles of solute

volume of solution (in liters)
 

just the solvent added.  If large amounts of solute are added to pure solvent the total volume will 

increase, but if small amounts are added either an increase or decrease may occur.  (A small solute 

species might draw solvent molecules towards itself, thus causing a small shrinkage.)  These units 

allow convenient comparison of reactants in different solutions through balanced equations.  We’ll 

go over other concentration units as we need them.   

Example:  What is the molarity of a solution that contains 17.4 g NaCl per 112 mL solution? 

 [NaCl] = (17.4 g)(
1 𝑚𝑜𝑙

58.44 𝑔
) (

1

112 𝑚𝐿
) (

1000 𝑚𝐿

𝐿
) = 2.66 

𝑚𝑜𝑙

𝐿
 = 2.66 M 

Likewise, the mass of a solute or volume or solvent can be obtained if 2 of the 3 (M, mass, vol) are 



 7 

known. 

It is important to keep in mind that the terms “dilute” and “concentrated” are relative and there 

is no strict definition of either.  A term that is useful when discussing solubility is “saturated.”  A 

solution is saturated when no more of the solute will dissolve at a particular temperature.  This will 

be discussed at length in CHM 212, but it’s a term you will hear in CHM 217.  A solution is 

“unsaturated” if less than the maximum amount has dissolved.  Another important thing to 

remember is that saturated solutions are not necessarily concentrated and unsaturated solutions are 

not necessarily dilute.  For example, you can grind up some chalk and add it to water and saturate 

the solution.   It will be dilute.  Make a gallon of a saturated sodium chloride solution.  It is 

concentrated.  Add a teaspoon of water and it’s no longer saturated, but it’s still concentrated. 

When an ionic solid dissolves, it exists in solution entirely as ions.  For convenience we write 

0.1 M NaCl, but in reality no NaCl actually exists in solution.  The solution consists of 0.1 M Na+ 

and 0.1 M Cl-.  For 0.1 M Na2CO3: 

Example: [Na+] = 0.2 M      and  [CO32-] = 0.1 M 

Dilution is the process of making a solution less concentrated, usually by adding solvent to a 

solution.  In this situation, the total amount of solute remains the same.  A convenient equality can 

be used to calculate the concentration after a solution has been diluted. 

McVc = MdVd 

This allows you to calculate the concentration of a solution after more solvent has been added, 

or more usefully, to calculate how much solvent must be added to an existing solution to dilute to a 

new concentration. 

Example: What is the concentration of a solution after 25.0 mL of the previous sodium chloride 
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is added to 125 mL of water?  (Assume the volumes are additive.) 

 (2.66 M)(25.0 mL) = Mf (1.50 x 102 mL) 

 Mf  =  0.443 M 

How much water must be added to 50.0 mL of the original NaCl solution to make it 1.00 M? 

 (2.66 M)(50.0 mL) = (1.00 M)Vf 

 Vd = 133 mL 

 Volume added = 133 mL - 50 mL = 83 mL 

One thing you might have noticed is that the volume term in molarity is L and the volumes used 

in the examples are mL.  We can get away with this because of the equality.  In each case, either the 

concentration or volume units will cancel. 

 

3.4 Other Units for Solution Concentrations 

There are numerous other concentration units used in chemistry, but these other units are 

employed in specific situations and not use used in as widespread of a way as molarity.  There are 

five such units introduced here, four of which have names that are largely self-explanatory. 

Mass percentage is the ratio of the mass of a solution component relative to the mass of the 

entire solution.   

mass percentcomponent = 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑚𝑎𝑠𝑠

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
 x 100% 

This is sometimes called weight percent and can be abbreviated (w/w)%.  This unit is usually 

employed for moderately concentrated solutions. 

Volume percentage is the ratio of the volume of a solution component relative to the volume of 

the entire solution.  This unit is only employed with solutions where at least one solute is a liquid. 
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volume percentcomponent = 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
 x 100% 

This is frequently abbreviated (v/v)%.  This unit is usually employed for moderately concentrated 

solutions. 

Parts per million and parts per billion are similar to mass percentage, but for very dilute 

solutions and only refer to the solute(s).  Thus, the equations are: 

parts per millioncomponent = 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑚𝑎𝑠𝑠

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
 x 106 

parts per billioncomponent = 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑚𝑎𝑠𝑠

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
 x 109 

Although solutions can be intentionally prepared this dilute, these units are more typically associated 

with the amount of an impurity/contaminent is present in a sample. 

Skip the mass/volume unit. 
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