
Chapter 8 – Advanced Theories of Covalent Bonding 

The previous chapter dealt with the basics of chemical bonding and molecular geometry.  

Here we get into the details of what causes two atoms to bind to one another and why some 

covalent bonds are stronger than others. 

 

11.1 Valence Bond (VB) Theory 

There are two major theories that describe bonding.  The one we cover first is more 

intuitive, but less accurate.  Furthermore, it is usually used only for covalent bonds.  You have 

already learned that a covalent bond was a shared pair of electrons.  We now discuss what was 

meant by “shared” and why sharing occurs.   

Consider a hydrogen atom.  If an electron passes close by, the positive nucleus will capture 

it because the nucleus can’t differentiate between its electron and the new one.  In doing so, 

the system releases energy (electron affinity) and forms a hydride anion.  Now consider two 

hydrogen nuclei that slowly approach one another.  At large distances, each nucleus attracts only 

its own electron.  However, as they get closer each nucleus begins to attract the electron on the 

other atom as well, resulting in the atoms pulling together.  In an isolated atom, each electron 

moves freely around the nucleus creating a spherical shape.  However, the electrons will now be 

drawn preferentially to the side of the atom facing the approaching hydrogen atom.  At the 

distance of closest approach, both electrons will spend most of the time between the two nuclei 

because there is maximum attraction there (the electrons will be close to 2 nuclei in the middle, 

as opposed to one on the far side of either atom).  The figure below shows the result of the 

interaction of two s orbitals starting at infinite distance and progressing to a bond.  The final 
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two pictures show the overlap of atomic orbitals.  The dashed lines show electrostatic 

attractions and the shaded portion is the region (volume) of overlap. 

 

Why does the approach stop?  The two nuclei repel each other and at some distance this 

repulsion offsets the added attraction of the two nuclei for its neighbor’s electrons.  The bond 

distance is the separation when these two forces are equal.   

There are three ways orbitals can overlap.  We will discuss two here.  When two hydrogen 

atoms overlap, electron density concentrates along the line connecting the nuclei.  Such “end-to-

end” overlap is called a -bond (sigma bond).  It occurs whenever an s orbital overlaps any other 

orbital or a p orbital overlaps through only one of its lobes.   

The second major bond type results from the side-to-side overlap of two orbitals either 

between two p orbitals or between p and d orbitals (shown below).  This is called a -bond (pi  

 

bond).  In a -bond, electron density concentrates above and below the internuclear axis with a 
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node in the plane separating the nuclei. 

=
 

Single bonds are  bonds, double bonds contain 1  bond and 1  bond, and triple bonds 

contain a  bond and 2  bonds.  There are a few exceptions to these rules, but you won’t 

encounter any in this course. 

 

8.2 Hybrid Orbitals 

A problem that may have caught your eye with the previous description is that while it works 

for H2, what about CH4?  There is no combination of orbitals that forms a tetrahedron.  S 

orbitals are spherical, while p and d orbitals each form 90º angles.  How are the shapes we 

actually see generated?  Valence bond theory gives us an answer using “hybridized” orbitals.   

sp Hybrid Orbitals 

Consider BeCl2.  VSEPR theory predicts a linear molecule with two identical bonds. The 

electron configuration of beryllium is [He] 2s2.  If a covalent bond results from a shared pair of 

electrons and in a normal bond each atom contributes one electron to the bond, the initial 

electron configuration of beryllium does not allow a bond to form because all its atomic orbitals 

are either completely filled or empty.  To obtain two orbitals containing one electron each, one 

of the electrons must be promoted from the 2s orbital to a 2p orbital. 

 

If the chlorine overlapped the 2s and 2p orbitals, the molecule would be linear, but with 
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bonds of different lengths, so something else must be happening. 

“Mixing” the orbitals solves the problem of different bond lengths.  This process is a 

combining and averaging of the orbitals resulting in a hybrid orbital.  In this example, one s and 

one p orbital mix, resulting in the generation of two sp hybrid orbitals.  A useful rule to 

remember is that the number of atomic orbitals used will equal the number of product hybrid 

orbitals; in this case, two.  Hybrid orbitals have the same basic shape regardless of whether 

they form from one s and one p orbital or one s and three p orbitals.   

 

 

One lobe is very large because the amplitudes of the wave functions are both positive and 

reinforce one another (constructive interference).  The other lobe is small because the 

amplitudes are opposed and partly cancel each other (destructive interference).  There would 

also be the mirror image of this orbital as well.  One reason why these orbitals form is that the 

shape leads to better overlap.  The end of the large lobe is blunter (shorter and flatter tipped) 

than a p orbital.  The better overlap provides the energy needed to promote the electron and 

mix the orbitals.  A second reason is that second row atoms are too small to accommodate 90º 

angles between substituents.  While most linear molecules possess sp hybridization, there are 

exceptions (e.g. XeF2). 
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sp2, sp3, sp3d, and sp3d2 Hybrid Orbitals 

The same sort of thing is done to get the trigonal planar and tetrahedral geometries.  If 

the atom has one p electron already, one of the s electrons is promoted into an empty p orbital. 

 

The three sp2 hybrid orbitals spread in a trigonal planar array, as in BF3, with a vacant p 

orbital perpendicular to the molecular plane. 

 

For a central atom with 2 p electrons, the s electron is promoted into the remaining vacant 

p orbital. 

 

The four sp3 hybrids spread in a tetrahedral array, as in CH4. 

As we have already discussed, expanded octets require the inclusion of d orbitals.  Consider 

the phosphorus in PF5: 

 

Finally, for the sulfur in SF6, we obtain: 

 



 6 

Finally, in geometries with lone pairs, those electrons go into a hybrid orbital. 

 

8.3 Multiple Bonds 

We now need to discuss the relationship of  bonds to hybridized orbitals.  Consider 

ethylene H2C=CH2.  The Lewis structure shows each carbon bound to three atoms and possessing 

no lone pairs.  Therefore, each exists in a trigonal planar arrangement.  We’ve already learned 

that molecules that have a trigonal planar base shape are sp2 hybridized.  Each of the hybrid 

orbitals  bonds, two to hydrogen atoms, one to the other carbon.  But this leaves an extra p 

orbital left over.  The remaining p orbitals on the carbons overlap with each other to form the 

 bond.  The  and  bonds between the carbons are the double bond represented by the double 

line in the Lewis structure.  The pictures on pp. 429 show this very nicely.  A rougher sketch is 

provided below. 

 

In molecules with triple bonds, the two  bonds lie at right angles to each other. 

A consequence of  bonds is molecular rigidity.  Consider the ethane molecule depicted in 

Figure 8.17 (p. 423) of your book.  The C-C bond is between two sp3 hybrids and there is free 

rotation about that bond.  What that means is that if you were to grasp/immobilize one of the 

CH3 groups, you would see the other CH3 spinning rapidly and, essentially, without restriction.  

A major reason for this is that there no loss of bonding interaction as the CH3 groups rotate.  

Now contrast this with ethene, CH2=CH2, which possesses a  bond.  In this situation, twisting 
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about the C-C axis would cause the p orbitals to unalign, which would lead to breaking the 

 bond.  For this reason, there is a very high energy barrier to  bond rotation and that makes 

the molecule more rigid. 

 

8.4 Molecular Orbital (MO) Theory  

While valence bond theory is relatively simple to use (it is the simplest bonding theory), it 

sometimes makes major errors in predictions.  For example, the Lewis structure of O2 tells us a 

double bond exists between the oxygen atoms with two lone pairs of electrons on each oxygen 

atom.  Experiment confirms the presence of two bonds, but the molecule is paramagnetic (i.e. it 

has unpaired electrons).  In the case of O2, there are 2 unpaired electrons.  A video shows the 

attraction of liquid oxygen to a strong magnet, something impossible if all electrons were paired.  

In VB theory, any molecule with an even number of electrons would be diamagnetic (all electrons 

paired).  VB theory also poorly explains the transition between ionic and covalent bonding. 

According to MO theory, when orbitals on two atoms interact, new molecular orbitals form.  

Just like in VB theory, for every atomic orbital put in, one product orbital forms.  In this case, 

they are called molecular orbitals.  In one case, the amplitudes on the waves reinforce one 

another and the atoms are attracted to one another.  This is called a bonding molecular orbital. 

(See Section 6.3 for a similar discussion of the de Broglie atom.)  In a bonding MO, the two 

electrons spend most of their time in the space between the nuclei. 

The other MO results from the waves having amplitudes of different signs and destructively 

interfering with each other.  This forces the electrons into the regions of space beyond the 

nuclei and creates a net repulsive force.  This orbital is called an antibonding molecular orbital.  

https://www.youtube.com/watch?v=Lt4P6ctf06Q
https://www.youtube.com/watch?v=Lt4P6ctf06Q
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It is repulsive because without electrons between the nuclei the electrostatic repulsion 

between the nuclei becomes the predominant operating force. 

 

There is also a third type of molecular orbital that your book doesn’t mention that you have 

already seen and are familiar with.  These are nonbonding orbitals.  Can you think of an example 

of these?  Answer appears in the last line of the notes. 

In MO theory, there are  and  bonds, just as in VB theory, and they look pretty much the 

same too.  To a first approximation, they arise from the same orbitals.  They are represented 

very differently, however.  We’ll look at two examples:  H2 and He2 which result from the 

interaction of two 1s orbitals. 

 

The 1s lies lower than the 1s in energy as much as the 1s* orbitals rise above the 1s in 

energy.  Thus, in H2 a bond forms, while in He2 the bonding and antibonding energies offset and 

no bond exists.  Both yield the same predictions as VB theory. 

Determining the number of bonds in VB theory can be straightforward: you simply count the 

lines.  Resonance forms complicate counting because partial bonds don’t exist in VB theory.  MO 

theory uses a formula and bond order replaces the ‘number of bonds,’ although they are roughly 

synonymous.   
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B.O. = ½(no. bonding electrons - no. antibonding electrons) 

Bond order eliminates the ambiguity of the number of bonds between two atoms.  For H2 

and He2 the bond orders are 1 and 0, respectively.  In MO theory half-bonds can exist.  An 

example would be H2
+ with a bond order of 0.5.  Reassuringly, half bonds are roughly half the 

strength of a full bond.   

The MO diagrams for Li2 and the hypothetical Be2 molecule are shown below.  The bond 

order for Li2 is one and for Be2 is zero.  In reality, Li2 (dilithium, get it?) forms in the gas 

phase, while Be2 has never been detected. 

 

The interaction of the 2p orbitals is more complicated.  Because the 2p orbitals are higher 

in energy than the 2s orbitals, their resulting MOs lie higher in energy as well (just above the 

previous figures). 

 

Electrons fill the well from the bottom up.  Thus, B2 has a bond order of one, C2 is two, and 
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N2 is three.  This is the same as the triple bond predicted by VB theory with the same 

components a  and 2  bonds.  At the beginning of Section 8.4, you were told O2 has two 

unpaired electrons.  This diagram predicts just such a scenario when the 8 p electrons on two 

oxygen atoms are filled in.  Figure 8.38 (p. 443) presents a more technically correct MO diagram 

for second-row diatomic molecules.  You may ignore this way of drawing the diagrams and use 

what are in these notes or use the book’s method; your choice. 

There is a notation for writing the location of electrons in an MO diagram that is very similar 

to that for an electron configuration.  In it, the atomic orbital is replaced by an MO.  For 

example, for Li2 from the previous page, the electron configuration for the MO would be 

(1s)2(*1s)2(2s)2.  The electron configuration for nitrogen gas would then be 

(1s)2(*1s)2(2s)2(*2s)2(2p)2(2p)4.  This method of providing the locations of the electrons has 

the obvious advantage of being very compact relative to the MO diagram. 

The most common type of nonbonding orbital is the lone pair.  We won’t cover other types.  
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