Name: \qquad
Fall 2023
Please Print
Test 2
Multiple Choice: (4 points each. Put answers in left margin as capital letters.)

1. How many significant figures are in the answer to the following problem: $\frac{2.511-2.311}{2736}$?
A) 1
B) 2
C) 3
D) 4
E) 5
2. What is the concentration of a sodium chloride (NaCl) solution after 40 mL of water is added to 60 mL of a solution that is initially 2.00 M ?
A) 0.67 M
B) 0.80 M
C) 1.20 M
D) 1.33 M
E) 2.00 M
3. Which of the following ionic compounds has the lowest water solubility?
A) CaSO_{4}
B) CoCO_{3}
C) KCl
D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
E) $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$
4. Which of the following is a precipitation reaction?
A) $\mathrm{Cu}(\mathrm{OH})_{2(\text { aq })}+2 \mathrm{HNO}_{3(\text { aq })} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq) }}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
B) $\mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq) }}+2 \mathrm{NH}_{3 \text { (aq) }} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4 \text { (aq) }}$
C) $\mathrm{FeCl}_{3(\mathrm{~s})}+3 \mathrm{AgNO}_{3(\mathrm{~g})} \rightarrow 3 \mathrm{AgCl}_{(\mathrm{s})}+3 \mathrm{Fe}(\mathrm{NO})_{3 \text { (aq) }}$
D) $2 \mathrm{SrS}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{SrCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
E) None is a precipitation reaction.
5. What is the oxidation number of the phosphorus atom in $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A) -1
B) +1
C) +3
D) +5
E) +7
6. Which of the following is a formation reaction?
A) $2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
D) $2 \mathrm{Al}_{(\mathrm{g})}+{ }^{3} / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
B) $2 \mathrm{Al}_{(\mathrm{s})}+{ }^{3} / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3 \text { (s) }}$
E) None of the above.
C) $4 \mathrm{Al}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
7. Which of the following processes is endothermic?
A) Water freezing.
C) The reaction of sodium and water
E) A block resting on a table
B) Coal burning.
D) A light bulb emitting light
8. What is $\Delta \mathrm{H}$ for the net reaction below?
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HF}_{(\mathrm{g})}$
$\Delta \mathrm{H}=-537 \mathrm{~kJ}$
$\mathrm{C}_{(\mathrm{s})}+2 \mathrm{~F}_{2(\mathrm{~g})} \longrightarrow \mathrm{CF}_{4(\mathrm{~g})}$
$\Delta \mathrm{H}=-680 \mathrm{~kJ}$
$2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2-(\mathrm{g})} \longrightarrow \mathrm{C}_{2} \underline{\mathrm{H}}_{4-(\mathrm{g})} \longrightarrow$
$\Delta \mathrm{H}=52.3 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+6 \mathrm{~F}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CF}_{4(\mathrm{~g})}+4 \mathrm{HF}_{(\mathrm{g})} \quad \Delta \mathrm{H}=$?
A) $-2,486 \mathrm{~kJ}$
B) $-1,702 \mathrm{~kJ}$
C) $-1,165 \mathrm{~kJ}$
D) 234 kJ
E) $1,165 \mathrm{~kJ}$
9. Which of the following is a statement of the first law of thermodynamics?
A) Energy can be freely exchanged between the system and the surroundings only in an open container.
B) The enthalpy of a reaction is independent of the number of steps taken.
C) Energy can be neither created nor destroyed.
D) It is possible to measure the exact energy of a substance only at absolute zero (0 K).
E) The heat of reaction of any spontaneous process must be negative.

Discussion Questions: (Show your work to receive credit.)

1. A solution of CaCl_{2} in water forms a mixture that is 22.0% calcium chloride by mass. If the total mass of the solution is 166.1 g , what masses of CaCl_{2} and water were used? What is the CaCl_{2} molar concentration? Assume the solution density is $1.00 \mathrm{~g} / \mathrm{mL}$. (10 points)
2. Propane burns according to the reaction: $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$ If 10.0 g of propane is reacted with 15.00 g of oxygen, which of the reactants is limiting? What is the maximum mass of carbon dioxide that can be produced? What is the percent yield if 10.0 g of CO_{2} is made? (15 points)
3. Complete the following: (10 points)
$\ldots \mathrm{ClO}_{2(\mathrm{~g})}+\ldots \mathrm{O}_{3(\mathrm{~g})} \rightarrow \ldots \mathrm{Cl}_{2} \mathrm{O}_{6(\mathrm{~g})}+\ldots \mathrm{O}_{2(\mathrm{~g})}$

Solid nickel(II) hydroxide reacts with aqueous hydrobromic acid to produce aqueous nickel(II) bromide and water.
4. What are standard conditions in thermochemistry? (4 points)
5. A researcher studying the nutritional value of a new candy places a 6.40 g sample of the candy inside a bomb calorimeter and combusts it in excess oxygen. The observed temperature increase is $2.11^{\circ} \mathrm{C}$. If the heat capacity of the calorimeter is $42.90 \mathrm{~kJ} \cdot \mathrm{~K}^{-1}$, how many kilojoules are there per gram of candy? (5 points)
6. Is the following process exothermic, endothermic, or neither? Explain. (10 points)
a) $\mathrm{CO}_{2(\mathrm{~s})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
b) $2 \mathrm{I}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}$
7. From the following data: (10 points)
$2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-89.4 \mathrm{~kJ}$
a) Is the reaction endothermic or exothermic?
b) How much energy would be absorbed or released if 10.75 g of potassium chloride formed?
c) If an unknown quantity of potassium chlorate is burned with a heat change of -325 kJ , what mass of potassium chlorate burned?

