Final Exam (100 points)

Page 1 of 8
Name: \qquad

Lanthanides | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C e}$ | $\mathbf{P r}$ | $\mathbf{N d}$ | $\mathbf{P m}$ | $\mathbf{S m}$ | $\mathbf{E u}$ | $\mathbf{G d}$ | $\mathbf{T b}$ | $\mathbf{D y}$ | $\mathbf{H o}$ | $\mathbf{E r}$ | $\mathbf{T m}$ | $\mathbf{Y b}$ | $\mathbf{L u}$ |
| 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |

Actinides

90	91	92	93	94	95	96	97	98	99	100	101	102	03
Th	$\mathbf{P a}$	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Potentially Useful Equations and Data

$$
\begin{gathered}
\mathrm{C}_{\mathrm{g}}=\mathrm{k}_{\mathrm{H}} \mathrm{P}_{\mathrm{g}}, \\
\mathrm{P}_{\text {Solvent }}=\mathrm{X}_{\mathrm{S}} \mathrm{P}_{\text {Solvent }}^{\circ}, \\
\Delta \mathrm{T}_{\mathrm{Bp}}=\mathrm{K}_{\mathrm{Bp}} m_{\text {Solute }} \\
\Delta \mathrm{T}_{\mathrm{Fp}}=\mathrm{K}_{\mathrm{Fp}} m_{\text {Solute }}, \\
\Pi=\mathrm{MRT} \\
\mathrm{~A}=\mathrm{kN}, \Delta \mathrm{E}=\Delta \mathrm{mc}^{2}
\end{gathered}
$$

Henry's Constants (at $25^{\circ} \mathrm{C}$)

Gas
$\mathrm{N}_{2} \quad 8.42 \times 10^{-7} \mathrm{M} / \mathrm{mmHg}$
$\mathrm{O}_{2} \quad 1.66 \times 10^{-6} \mathrm{M} / \mathrm{mmHg}$
$\mathrm{CO}_{2} \quad 4.48 \times 10^{-5} \mathrm{M} / \mathrm{mmHg}$

$$
\begin{aligned}
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pK}_{\mathrm{a}}=-\log \left[\mathrm{K}_{\mathrm{a}}\right] \\
& p H=p K_{a}-\log \left\lfloor\frac{H A}{A^{-}}\right\rfloor
\end{aligned}
$$

For $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD} \ldots \quad 1 \mathrm{~atm}=760 \mathrm{mmHg}$
Rate $=-\frac{1}{\mathrm{a}} \frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=-\frac{1}{\mathrm{~b}} \frac{\Delta[\mathrm{~B}]}{\Delta \mathrm{t}}=\frac{1}{\mathrm{c}} \frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}=\frac{1}{\mathrm{~d}} \frac{\Delta[\mathrm{D}]}{\Delta \mathrm{t}} 1 \mathrm{~mL} \mathrm{H} \mathrm{R}=8.31451 \mathrm{~J} / \mathrm{Mol} \mathrm{K}$
Forward Rate $=k[A]^{n}[B]^{m}$
$\ln (a)+\ln (b)=\ln (a b), \ln \left(e^{a x}\right)=a x$
$\ln (a)-\ln (b)=\ln (a / b), e^{\ln (a x)}=a x$
$\ln \left(e^{a x}\right)=a x, e^{\ln (a x)}=a x$

$$
\frac{1}{[\mathrm{~A}]_{\mathrm{f}}}=\frac{1}{[\mathrm{~A}]_{\mathrm{o}}}+\mathrm{kt}
$$

$$
[\mathrm{A}]_{\mathrm{f}}=[\mathrm{A}]_{\mathrm{o}}-\mathrm{kt}
$$

$$
\ln [\mathrm{A}]_{\mathrm{f}}=\ln [\mathrm{A}]_{\mathrm{o}}-\mathrm{kt}
$$

$$
\frac{\ln 2}{\mathrm{k}}=\mathrm{t}_{1 / 2}, k=A e^{-E_{a} I R T}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=-\mathrm{nf} \mathcal{E}^{\circ} \\
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K} \\
& \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}
\end{aligned}
$$

$\mathrm{R}=0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$ $\mathrm{c}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ mass $\mathrm{e}^{-}=5.485799 \times 10^{-4} \mathrm{amu}$ mass $\mathrm{p}^{+}=1.00727646 \mathrm{amu}$ mass $\mathrm{n}=1.00866492 \mathrm{amu}$ charge $\mathrm{e}^{-}=1.6022 \times 10^{-19} \mathrm{C}$
$1 \mathrm{amu}=1 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{sec}^{-2}$
1 US\$=70.0994 Syrian Pounds
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$
$\mathrm{F}=96,485.31 \mathrm{C} / \mathrm{Mol}$ $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
\qquad
For Questions $1 \& 2$ consider the phase diagram of CO_{2} on the right.

1. In which region is $\mathrm{CO}_{2}(\mathrm{~g})$ the only species present?
(a) A
(b) B
(c) C
(d) D
(e) E
2. Between which two regions does sublimation occur?
(a) A-B
(b) B-C
(c) A-C
(d) C-D
(e) A-D

3. Which of the following is not a colligative property of a solution?
(a) freezing point depression
(b) boiling point elevation
(c) density
(d) vapor pressure reduction
(e) osmotic pressure
4. An aqueous solution of sucrose freezes at $-3.35^{\circ} \mathrm{C}$. What is the molality of the solution?

The freezing-point-depression constant of water is $1.86^{\circ} \mathrm{C}$.
(a) 0.55 m
(b) 1.80 m
(c) 6.23 m
(d) 0.38 m
(e) 1.20 m
5. Which liquid or solution will have the lowest freezing point?
(a) pure $\mathrm{H}_{2} \mathrm{O}$
(b) 0.50 m glucose
(c) 0.50 m sucrose
(d) $0.22 \mathrm{~m} \mathrm{CH}_{3} \mathrm{OH}$
(e) 0.50 m KF

For 6 and 7 consider the dissolution of $\mathrm{O}_{2}(\mathrm{~g})$ in water at $25^{\circ} \mathrm{C}, \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{aq}), \Delta \mathrm{H}>0$
6. If the temperature is raised to $50^{\circ} \mathrm{C}$ the concentration of $\mathrm{O}_{2}(\mathrm{aq})$ will.
(a) increase
(b) decrease
(c) remain constant
(d) $=\mathrm{h} v$
(e) can't determine
7. If the external $\mathrm{O}_{2}(\mathrm{~g})$ pressure is raised the concentration of $\mathrm{O}_{2}(\mathrm{aq})$ will,
(a) increase
(b) decrease
(c) remain constant
(d) $=\mathrm{h} v$
(e) can't determine
8. Consider the following aqueous solutions, $\mathrm{A}: 0.20 \mathrm{~m}$ sucrose, $\mathrm{B}: 0.15 \mathrm{~m} \mathrm{NaCl}, \& \mathrm{C}: 0.05 \mathrm{~m} \mathrm{CaCl} 2$. Which inequality best describes the relative boiling points of these solutions?
(a) A $<$ B $<$ C
(b) A $<$ C $<$ B
(c) $\mathrm{C}<$ B $<$ A
(d) B $<$ A $<$ C
(e) C $<$ A $<$ B

NAME
For questions $9-11$, consider the decomposition of hydrogen peroxide described by following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

with the following thermodynamic values:

Compound	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{G}_{\mathrm{f}}{ }^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{S}^{\mathrm{o}}(\mathrm{J} / \mathrm{K}-\mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$	-187.8	-120.4	109.6
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8	-237.13	69.9
$\mathrm{O}_{2}(\mathrm{~g})$	0	0	205.1

9. Calculate the $\Delta \mathrm{H}^{0}$ for the hydrogen peroxide reaction
(a) $98 \mathrm{~kJ} / \mathrm{mol}$
(b) $196 \mathrm{~kJ} / \mathrm{mol}$
(c) $-96 \mathrm{~kJ} / \mathrm{mol}$
(d) $-196 \mathrm{~kJ} / \mathrm{mol}$
(e) none of these
10. Calculate the $\Delta \mathrm{S}^{0}$ for the hydrogen peroxide reaction
(a) $125.7 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(b) $-79.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(c) $45.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(d) $-125.7 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(e) none of these
11. Calculate the $\Delta \mathrm{G}^{0}$ for the hydrogen peroxide reaction
(a) $233.4 \mathrm{~kJ} / \mathrm{mol}$
(b) $158.5 \mathrm{~kJ} / \mathrm{mol}$
(c) $-158.4 \mathrm{~kJ} / \mathrm{mol}$
(d) $-202.8 \mathrm{~kJ} / \mathrm{mol}$
(e) none of these
12. For another reaction, $\Delta \mathrm{H}^{0}=+56.8 \mathrm{~kJ}$ and $\Delta \mathrm{G}^{0}=+45.0 \mathrm{~kJ} / \mathrm{mol}$. What is the $\Delta \mathrm{S}^{\circ}$ of this reaction in $\mathrm{J} / \mathrm{K} \cdot \mathrm{mol}\left(\mathrm{T}=25^{\circ} \mathrm{C}\right)$?
(a) $39.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(b) $-39.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(c) $472 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(d) $-472 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
(e) none of these
13. The second law states that a spontaneous chemical reaction will be accompanied by :
(a) an increase in the entropy of the chemicals $\left(\Delta S^{0}\right.$ of reaction $\left.>0\right)$
(b) an increase in the enthalpy of the chemicals $\left(\Delta \mathrm{H}^{0}\right.$ of reaction $\left.>0\right)$
(c) an increase in the free energy of the chemicals $\left(\Delta \mathrm{G}^{0}\right.$ of reaction $\left.>0\right)$
(d) an increase in the entropy of the universe $\left(\Delta \mathrm{S}_{\text {total }}>0\right)$
(e) none of these
14. The following reaction: $\mathrm{A}(g)+2 \mathrm{~B}(s) \rightarrow \mathrm{C}(g)+\mathrm{D}(g), \Delta \mathrm{H}<0$, will be spontaneous at:
(a) Low T
(b) High T
(c) All T
(d) No T
(e) can't determine
15. For a first-order reaction, a graph of which quantities would give a straight line for reactant A ?
(a) $[\mathrm{A}]$ vs time
(b) $\ln \mathrm{A}$ vs time
(d) $1 /(\mathrm{A}]$ vs temp
(e) $[\mathrm{A}]^{2}$ vs time
(c) $1 /(\mathrm{A}]$ vs time
16. A first-order chemical reaction is observed to have a rate constant of $25.0 / \mathrm{min}$. What is the half-life of the reaction?
(a) 12.5 min
(b) 17.3 min
(c) 0.29 sec
(d) $4.62 \times 10^{-4} \mathrm{sec}$
(e) 0.0277 min

Page 4 of 8

NAME \qquad
17. The reaction mechanism for the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is

$$
\begin{array}{lr}
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-} & \text {slow } \\
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{I}^{-} & \text {fast }
\end{array}
$$

Which of the following statements is true?
(a) I^{-}is an intermediate.
(b) IO^{-}is an intermediate.
(c) The reaction is first order with respect to $\left[\mathrm{O}_{2}\right]$.
(d) The reaction is zero-order with respect to $\left[\mathrm{I}^{-}\right]$.
(e) The reaction is second-order with respect to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$.

For 18 consider the reaction,

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \xlongequal[\mathrm{k}_{-1}]{\mathrm{k}_{1}} 2 \mathrm{HBr}
$$

and the following energy profile obtained at 1000 K :

(18) Estimate the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ for the forward reaction in $\mathrm{kJ} / \mathrm{mol}$.
(a) -80
(b) 0
(c) 80
(d) 160
(e) 240
(19) For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, with a rate law of: $\mathrm{RATE}=\mathrm{k}[\mathrm{A}]^{2}[B]$, calculate the rate constant, k (with units), when $[A]=0.010 \mathrm{M}$ and $[B]=0.030 \mathrm{M}$ and the initial rate is $2.1 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \cdot \mathrm{sec})$
(a) Not enough Information
(b) $70 L^{2} /\left(\mathrm{mol}^{2} \bullet \mathrm{sec}\right)$
(c) $70 \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{sec})$
(d) $7.0 \times 10^{3} \mathrm{~L} /(\mathrm{mol} \bullet \mathrm{sec})$
(e) $7.0 \times 10^{3} \mathrm{~L}^{2} / \mathrm{mol}^{2} \bullet \mathrm{sec}$

NAME
(20) Consider the following data for the reaction at $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Initial [O2] $(\mathrm{mol} / \mathrm{L})$	Initial [NO] $(\mathrm{mol} / \mathrm{L})$	Initial rate $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{sec})$
0.01	0.01	7.0×10^{-3}
0.01	0.03	2.1×10^{-2}
0.03	0.03	1.9×10^{-1}

The reaction order for NO and O_{2} is \qquad and \qquad , respectively.
(a) $0^{\text {th }}, 1^{\text {st }}$
(b) $1^{\text {st }}, 0^{\text {th }}$
(c) $1^{\text {st }}, 1^{\text {st }}$
(d) $1^{\text {st }}, 2^{\text {nd }}$
(e) $2^{\text {nd }}, 1^{\text {st }}$

For the equilibrium (Questions $21 \& 22$): $\quad 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})}$
21. Which of the following is the correct equilibrium expression for the reaction.
a) $K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]\left[\mathrm{O}_{2}\right]^{6}}{\left[\mathrm{CO}_{2}\right]^{6}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
b) $K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
c) $K_{\mathrm{c}}=\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]\left[\mathrm{O}_{2}\right]^{6}$
d) $K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
e) $K_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]^{6}}{\left[\mathrm{CO}_{2}\right]^{6}}$
22. Increasing pressure would shift the equilibrium
(a) to the right.
(b) to the left
(c) would leave the equilibrium unchanged.
23. For the reaction $2 \mathrm{COF}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CF}_{4(\mathrm{~g})}$, what is the equilibrium constant, K_{C}, if $\left[\mathrm{COF}_{2}\right]=0.035 \mathrm{M},\left[\mathrm{CO}_{2}\right]=0.32 \mathrm{M}$, and $\left[\mathrm{CF}_{4}\right]=0.0075 \mathrm{M}$ at equilibrium at $1000{ }^{\circ} \mathrm{C}$?
(a) 8.4×10^{-6}
(b) 0.034
(c) 0.068
(d) 2.0
(e) 49
24. The equilibrium constant, K_{P}, for the reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is 3.0 at $173{ }^{\circ} \mathrm{C}$. If $\mathrm{P}_{\mathrm{SO}_{2} \mathrm{Cl}_{2}}=0.12 \mathrm{~atm}, \mathrm{P}_{\mathrm{SO}_{2}}=47 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{Cl}_{2}}=0.015 \mathrm{~atm}$, the reaction:
(a) will shift right.
(b) will shift left.
(c) is at equilibrium.
25. What is $\Delta \mathrm{G}^{0}$ for the reaction in problem 24 at $173^{\circ} \mathrm{C}$ in kJ ?
(a) 1.6
(b) 8.3
(c) 0.040
(d) 40
(e) 4.0
26. Which of the following would change the value of the equilibrium constant?
(a) change in pressure
(b) changes in concentration
(d) change in temperature
(e) all of these
(c) addition of a catalyst

NAME
27. What is the pH of a 0.46 M nitrous acid, HNO_{2}, solution $\left(K_{\mathrm{a}}=4.5 \times 10^{-4}\right)$?
(a) 0.34
(b) 1.84
(c) 3.35
(d) 3.68
(e) 4.22
28. K_{a} for nitrous acid is 4.5×10^{-4}. What is K_{b} for its conjugate base?
(a) 2.2×10^{-11}
(b) 2.22×10^{-7}
(c) 2.22×10^{-4}
(d) 2.22
(e) 2.2×10^{2}
29. Which of the following is the conjugate base to $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$?
(a) $\mathrm{PO}_{4}{ }^{3-}$
(b) $\mathrm{HPO}_{4}{ }^{2-}$
(c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
30. Which of the following bases is strongest?
(a) ammonia ($K_{\mathrm{b}}=1.8 \times 10^{-5}$)
(b) aniline $\left(K_{\mathrm{b}}=4.3 \times 10^{-10}\right)$
(c) hydrazine ($K_{\mathrm{b}}=1.3 \times 10^{-6}$)
(d) methylamine $\left(K_{\mathrm{b}}=4.4 \times 10^{-4}\right)$
(e) pyridine $\left(K_{\mathrm{b}}=1.7 \times 10^{-9}\right)$
31. In a titration, 25.0 mL of a weak, monoprotic acid is titrated with 17.2 mL 0.144 M sodium hydroxide solution to reach its equivalence point. What is the concentration of the weak acid?
(a) 0.00248 M
(b) 0.0991 M
(c) 0.144 M
(d) 0.209 M
(e) 2.48 M
32. What is the pH of a solution that is 0.25 M in hypochlorous acid $\left(K_{\mathrm{a}}=3.0 \times 10^{-8}\right)$ and 0.35 M hypochlorite ion?
(a) 4.31
(b) 5.42
(c) 7.38
(d) 7.52
(e) 7.67
33. Combination of equal molar amounts of a weak acid and a strong base yields a solution that
(a) is acidic.
(b) is basic.
(c) is neutral
(d) You must have K_{a} of the acid to answer this question.
34. What is the solubility product constant, K_{sp}, for lead(II) fluoride, PbF_{2}, if a saturated solution contains $\left[\mathrm{Pb}^{2+}\right]=0.0021 M$ and $\left[\mathrm{F}^{-}\right]=0.0042$?
(a) 2.1×10^{-3}
(b) 1.8×10^{-5}
(c) 8.8×10^{-6}
(d) 1.5×10^{-7}
(e) 3.7×10^{-8}
35. What is the molar solubility of nickel(II) hydroxide, $\mathrm{Ni}(\mathrm{OH})_{2}$, if the pH of the solution is 10.00 ? $\left(K_{\text {sp }}=6.0 \times 10^{-16}\right)$?
(a) 1.5×10^{-8}
(b) 6.0×10^{-8}
(c) 1.5×10^{-12}
(d) 6.0×10^{-12}
36. A bidentate ligand is a Lewis \qquad that can \qquad two electron pairs.
(a) base, accept
(b) base, donate
(c) acid, accept
(d) acid, donate
(e) structure, use

NAME
For questions 37 through 40 consider the complex $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{~F}_{2}\right] \mathrm{NO}_{3}$.
37. Which of the following species is not in the coordination complex?
(a) Co
(b) en
(c) F
(d) NO_{3}
(e) All in
38. What is the geometry around the central Co ion?
(a) Octahedral
(b) Square Planar
(c) Tetrahedral
(d) Square Planar or Tetrahedral
(e) Trigonal Bilinear
39. How many 4 d electrons are on central Co ion?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
40. The number of unpaired electrons on Co in a low spin (spin-paired) complex would be
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

For questions 41 through 44 consider the reaction:

$$
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})--->\mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq}) \text { (acidic solution) }
$$

41.When the reaction is balanced, one finds that the reducing agent is:
(a) MnO_{4}^{-}
(b) Cl^{-}
(c) Mn^{2+}
(d) Cl_{2}
(e) $\mathrm{H}_{3} \mathrm{O}^{+}$
42. The number of electrons (n) involved in the balanced reaction is:
(a) 5
(b) 6
(c) 8
(d) 10
(e) 12
43.The potential associated with this reaction is +0.15 V . What is the value of $\Delta G_{R x n}^{0}(\mathrm{~kJ})$?
(a) 14.5
(b) 145
(e) 72.5
(d) -145
(e) -14.5
44. What is the value of K_{eq} for this reaction at 298 K ?
(a) 3.8×10^{-26}
(b) 6×10^{2}
(c) 1.1
(d) 0.94
(e) 2.6×10^{25}
45. What is the oxidation half-reaction for the following REDOX reaction?

$$
2 \mathrm{KBr}(\mathrm{l}) \rightarrow 2 \mathrm{~K}(\mathrm{l})+\mathrm{Br}_{2}(\mathrm{~g})
$$

(a) $2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
(b) $\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$
(c) $2 \mathrm{~K}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~K}$
(d) $2 \mathrm{~K} \rightarrow 2 \mathrm{~K}^{+}+2 \mathrm{e}^{-}$
(e) $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
46. When a uranium- 238 nucleus (${ }^{238} \mathrm{U}$) undergoes 2 alpha emissions and 2 beta emissions, the nucleus formed is
(a) ${ }^{84} \mathrm{Po}$
(b) ${ }^{230} \mathrm{Th}$
(c) ${ }^{227} \mathrm{U}$
(d) ${ }^{230} \mathrm{Ra}$
(e) ${ }^{228} \mathrm{~Pa}$
47. What is the name given to the amount of energy it would take to separate the nucleus into its individual nucleons?
(a) nuclear fission
(b) nuclear fusion
(c) electron capture
(d) binding energy
(e) ionization energy
48. How many nucleons are present in one ${ }^{16} \mathrm{O}^{2-}$ anion?
(a) 16
(b) 8
(c) 10
(d) 26
(e) none of these

Page 8 of 8

NAME

49. Atoms of the same element with different mass numbers are called
(a) isobars
(b) isotopes
(c) allotropes
(d) isomers
(e) nucleons
50. The half-life of ${ }^{90} \mathrm{Sr}$ is 28 years. How long will it take for a sample of ${ }^{90} \mathrm{Sr}$ to be 85% decomposed?
(a) 29 years
(b) 77 years
(c) 88 years
(d) 94 years
(e) 110 years.
