Ν	ame	:

	1																
1																	2
H																	He
1.008																	4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.08	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt									
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(266)	(266)									
				6	70	(0)	(1	(2)	(7)		65		(7	(0)	60	-	
		T		58	59	60	61	62	63	64	65	66	67	68	69	70	71
		Lantha	anides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0

Actinides

90

Th

232.0

91

Pa

231.0

92

U

238.0

93

Np

237.0

Potentially Useful Equations and Data

95

96

Am Cm

(243) (247)

97

Bk

(247)

98

Cf

(251)

99

Es

(252)

100

Fm

(257)

101

Md

(258)

1 V = 1 J/C

102

No

(259)

103

Lr

(260)

94

Pu

(244)

	$C_g = k_H P_g,$
P _s	$_{\text{Solvent}} = X_{\text{S}} P_{\text{Solvent}}^{\circ},$
Δ	$AT_{Bp} = K_{Bp} m_{Solute}$
Δ	$\mathrm{T}_{\mathrm{Fp}} = \mathrm{K}_{\mathrm{Fp}} m_{\mathrm{Solute}} ,$
	$\Pi = MRT$
A =	= kN, $\Delta E = \Delta mc^2$
Henry's	Constants (at 25 °C)
Gas	$ m K_{H}$
N_2	8.42 x 10 ⁻⁷ M/mmHg
O_2	1.66 x 10 ⁻⁶ M/mmHg
CO_2	4.48 x 10 ⁻⁵ M/mmHg

$pH = -log[H_3G]$	D ⁺]
pOH = -log[OH]	∃ _]
$pK_a = -log[K_a]$]
$pH = pK_a - \log \theta$	$\frac{HA}{A^{-}}$

 $\operatorname{Rate} = -\frac{\operatorname{For} aA + bB \to cC + dD \dots}{a \Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$ $Forward Rate = k[A]^{n}[B]^{m}$ $\ln(a) + \ln(b) = \ln(ab), \ln(e^{ax}) = ax$ $\ln(a) - \ln(b) = \ln(a/b), e^{\ln(ax)} = ax$ $\ln(a) - \ln(b) = \ln(a/b), e^{\ln(ax)} = ax$ $\ln(e^{ax}) = ax, e^{\ln(ax)} = ax$ $\frac{1}{[A]_{f}} = \frac{1}{[A]_{o}} + kt,$ $[A]_{f} = [A]_{o} - kt,$ $\ln[A]_{f} = \ln[A]_{o} - kt,$ $\frac{\ln 2}{k} = t_{1/2}, k = Ae^{-E_{a}/RT}$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

 $\Delta G^{\circ} = -nf \boldsymbol{\mathcal{E}}^{\circ}$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G^{\circ} = -RT \ln K$ $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $\begin{array}{l} 1 \mbox{ atm} = 760 \mbox{ mmHg} \\ 1 \mbox{ mL} \ H_2O = 1 \mbox{ g} \ H_2O \\ R = 8.31451 \ J/Mol \ K \\ R = 0.082057 \ L \mbox{ atm}/K \mbox{ mol} \\ c = 2.99792458 \ x \ 10^8 \ m/sec \\ mass \ e^- = 5.485799 x \ 10^{-4} \mbox{ amu} \\ mass \ p^+ = 1.00727646 \ amu \\ mass \ n = 1.00866492 \ amu \\ charge \ e^- = 1.6022 \ x \ 10^{-19} \ C \\ 1 \ amu = 1 \ g/mol \\ 1 \ J = 1 \ kg \ m^2 \ sec^{-2} \\ 1 \ US\$ = 70.0994 \ Syrian \ Pounds \\ K_w = 1 \ x \ 10^{-14} \\ F = 96,485.31 \ C/Mol \end{array}$

Page 2 of 8

NAME

For Questions 1 & 2 consider the phase diagram of CO₂ on the right.

12 1. In which region is CO_2 (g) the only species present? (a) A (b) B (c) C Pressure (atm) 8 (d) D (e) E 4 С 2. Between which two regions does sublimation occur? (b) B-C (c) A-C (a) A-B 0 (d) C-D (e) A-D -80 -40 0 40 Temperature (¡C) 3. Which of the following is not a colligative property of a solution? (a) freezing point depression (b) boiling point elevation (c) density (d) vapor pressure reduction (e) osmotic pressure 4. An aqueous solution of sucrose freezes at -3.35 °C. What is the molality of the solution? The freezing-point-depression constant of water is 1.86 °C. (a) 0.55 m (b) 1.80 m (c) 6.23 m (d) 0.38m (e) 1.20 m 5. Which liquid or solution will have the lowest freezing point? (a) pure H_2O (b) 0.50 m glucose(c) 0.50 m sucrose(d) 0.22 m CH₃OH (e) 0.50 m KF For 6 and 7 consider the dissolution of O_2 (g) in water at 25°C, O_2 (g) $\rightleftharpoons O_2$ (aq), $\Delta H > 0$ 6. If the temperature is raised to 50 °C the concentration of O_2 (aq) will. (b) decrease (c) remain constant (a) increase (d) =hv(e) can't determine 7. If the external O_2 (g) pressure is raised the concentration of O_2 (aq) will, (a) increase (b) decrease (c) remain constant (d) = hv(e) can't determine

8. Consider the following aqueous solutions, A: 0.20 *m* sucrose, B: 0.15 *m* NaCl, & C: 0.05 *m* CaCl₂. Which inequality best describes the relative boiling points of these solutions?

(a) A <b<c< th=""><th>(b) A<c<b< th=""><th>(c) C\leqB\leqA</th><th>(d) $B \leq A \leq C$</th></c<b<></th></b<c<>	(b) A <c<b< th=""><th>(c) C\leqB\leqA</th><th>(d) $B \leq A \leq C$</th></c<b<>	(c) C \leq B \leq A	(d) $B \leq A \leq C$
(e) C <a<b< td=""><td></td><td></td><td></td></a<b<>			

Page 3 of 8

NAME_______For questions 9 – 11, consider the decomposition of hydrogen peroxide described by following reaction:

$$2 \operatorname{H}_2O_2(l) \rightarrow 2 \operatorname{H}_2O(l) + O_2(g)$$

with the following thermodynamic values:

Compound	ΔH_{f}^{o} (kJ/mol)	$\Delta G_{\rm f}^{\rm o}$ (kJ/mol)	S° (J/K-mol)					
$H_2O_2(l)$	-187.8	-120.4	109.6					
$H_2O(l)$	-285.8	-237.13	69.9					
$O_2(g)$	0	0	205.1					
9. Calculate the ΔH° for th (a) 98 kJ/mol (b)	 9. Calculate the ΔH° for the hydrogen peroxide reaction (a) 98 kJ/mol (b) 196 kJ/mol (c) -96 kJ/mol (d) -196 kJ/mol (e) none of these 							
10. Calculate the ΔS° for th (a) 125.7 J/K·mol (b)	ne hydrogen peroxide react -79.4 J/K·mol (c) 45.6 J	ion /K∙mol (d) -125.7 J/K∙mo	1 (e) none of these					
11. Calculate the ΔG° for (a) 233.4 kJ/mol (b)	the hydrogen peroxide reac 158.5 kJ/mol (c) -158.4	tion kJ/mol (d) -202.8 kJ/mo	ol (e) none of these					
12. For another reaction, Δl in J/K·mol (T = 25 °C) (a) 39.6 J/K·mol	$H^{\circ} = +56.8 \text{ kJ} \text{ and } \Delta G^{\circ} =$? (b) -39.6 J/	+45.0 kJ/mol. What is the ⊿ K∙mol	S [°] of this reaction (c) 472 J/K·mol					
(d) -472 J/K·mol	(e) none of	ne of these						
13. The second law states that a spontaneous chemical reaction will be accompanied by : (a) an increase in the entropy of the chemicals (ΔS° of reaction > 0) (b) an increase in the enthalpy of the chemicals (ΔH° of reaction > 0) (c) an increase in the free energy of the chemicals (ΔG° of reaction > 0) (d) an increase in the entropy of the universe ($\Delta S_{total} > 0$) (e) none of these								
14. The following reaction: $A(g) + 2B(s) \rightarrow C(g) + D(g)$, $\Delta H < 0$, will be spontaneous at: (a) Low T (b) High T (c) All T (d) No T (e) can't determine								
 15. For a first-order reaction, a graph of which quantities would give a straight line for reactant A? (a) [A] vs time (b) ln A vs time (c) l[A] vs time (d) l[A] vs temp (e) [A]² vs time 								
16. A first-order chemical of the reaction?	reaction is observed to have	e a rate constant of 25.0/min	. What is the half-life					
(a) 12.5 min (b) 1	(c) 0.29 sec	(d) 4.62×10^{-4} sec	(e) 0.0277 min					

Page 4 of 8

NAME_

17. The reaction mechanism for the decomposition of H_2O_2 is

$$\begin{split} &H_2O_2+I^- \rightarrow H_2O+IO^- \qquad \text{slow} \\ &H_2O_2+IO^- \rightarrow H_2O+O_2+I^- \qquad \text{fast} \end{split}$$

Which of the following statements is true?

(a) I^- is an intermediate.

(b) IO^- is an intermediate.

(c) The reaction is first order with respect to $[O_2]$.

(d) The reaction is zero-order with respect to $[I^-]$.

(e) The reaction is second-order with respect to $[H_2O_2]$.

For 18 consider the reaction,

$$H_2 + Br_2 \xrightarrow{k_1} 2 HBr_2$$

and the following energy profile obtained at 1000 K:

(19) For the reaction $2A + B \rightarrow C$, with a rate law of: RATE=k[A]²[B], calculate the rate constant, k (with units), when [A]=0.010 M and [B]=0.030 M and the initial rate is $2.1 \times 10^{-2} \text{ mol/(L} \cdot \text{sec})$

(a) Not enough Information
(b)
$$70 L^2 / (mol^2 \cdot sec)$$

(c) $70 L / (mol \cdot sec)$
(d) $7.0x10^3 L / (mol \cdot sec)$
(e) $7.0x10^3 L^2 / mol^2 \cdot sec$

Page 5 of 8

NAME

(20) Consider the following data for	the reaction at 25 °C:
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

Initial [O ₂]	Initial [NO]	Initial rate
(mol / L)	(mol / L)	$(mol / L \cdot sec)$
0.01	0.01	7.0 x 10 ⁻³
0.01	0.03	2.1 x 10 ⁻²
0.03	0.03	1.9 x 10 ⁻¹

The reaction order for NO and O₂ is _____ and ____, respectively.

(a) 0^{th} , 1^{st} (b) 1^{st} , 0^{th} (c) 1^{st} , 1^{st} (d) 1^{st} , 2^{nd} (e) 2^{nd} , 1^{st}

For the equilibrium (Questions 21 & 22): $6 \text{ CO}_{2 (g)} + 6 \text{ H}_2 \text{O}_{(l)} = C_6 \text{H}_{12} \text{O}_{6 (s)} + 6 \text{ O}_{2 (g)}$

21. Which of the following is the correct equilibrium expression for the reaction.

(b) to the left

a)
$$K_{c} = \frac{[C_{6}H_{12}O_{6}][O_{2}]^{6}}{[CO_{2}]^{6}[H_{2}O]^{6}}$$
 c) $K_{c} = [C_{6}H_{12}O_{6}][O_{2}]^{6}$ e) $K_{c} = \frac{[O_{2}]^{6}}{[CO_{2}]^{6}}$
b) $K_{c} = \frac{[C_{6}H_{12}O_{6}]}{[H_{2}O]^{6}}$ d) $K_{c} = \frac{[C_{6}H_{12}O_{6}][O_{2}]}{[CO_{2}][H_{2}O]}$

22. Increasing pressure would shift the equilibrium

(a) to the right.

(c) would leave the equilibrium unchanged.

- 23. For the reaction $2 \operatorname{COF}_{2(g)} \bigoplus \operatorname{CO}_{2(g)} + \operatorname{CF}_{4(g)}$, what is the equilibrium constant, $K_{\rm C}$, if $[\operatorname{COF}_2] = 0.035 \ M$, $[\operatorname{CO}_2] = 0.32 \ M$, and $[\operatorname{CF}_4] = 0.0075 \ M$ at equilibrium at 1000 °C?
- (a) 8.4×10^{-6} (b) 0.034 (c) 0.068 (d) 2.0 (e) 49

24. The equilibrium constant, K_P , for the reaction $SO_2Cl_{2(g)} \implies SO_{2(g)} + Cl_{2(g)}$ is 3.0 at 173 °C. If $P_{SO_2Cl_2} = 0.12$ atm, $P_{SO_2} = 47$ atm, and $P_{Cl_2} = 0.015$ atm, the reaction: (a) will shift right. (b) will shift left. (c) is at equilibrium.

- 25. What is ΔG° for the reaction in problem 24 at 173 °C in kJ? (a) 1.6 (b) 8.3 (c) 0.040 (d) 40 (e) 4.0
- 26. Which of the following would change the value of the equilibrium constant?
- (a) change in pressure (b) changes in concentration (c) addition of a catalyst
- (d) change in temperature (e) all of these

Page 6 of 8

NAME

- 27. What is the pH of a 0.46 M nitrous acid, HNO₂, solution ($K_a = 4.5 \times 10^{-4}$)?
 - (a) 0.34 (b) 1.84 (c) 3.35 (d) 3.68 (e) 4.22
- 28. K_a for nitrous acid is 4.5 x 10⁻⁴. What is K_b for its conjugate base? (a) 2.2×10^{-11} (b) 2.22×10^{-7} (c) 2.22×10^{-4} (d) 2.22 (e) 2.2×10^2
- 29. Which of the following is the conjugate base to $H_2PO_4^-$? (a) PO_4^{3-} (b) HPO_4^{2-} (c) $H_2PO_4^-$ (d) H_3PO_4
- 30. Which of the following bases is strongest?
 - (a) ammonia $(K_{\rm b} = 1.8 \times 10^{-5})$ (b) aniline $(K_{\rm b} = 4.3 \times 10^{-10})$
 - (c) hydrazine $(K_{\rm b} = 1.3 \times 10^{-6})$ (d) methylamine $(K_{\rm b} = 4.4 \times 10^{-4})$
 - (e) pyridine ($K_{\rm b} = 1.7 \times 10^{-9}$)
- 31. In a titration, 25.0 mL of a weak, monoprotic acid is titrated with 17.2 mL 0.144 *M* sodium hydroxide solution to reach its equivalence point. What is the concentration of the weak acid?
 - (a) 0.00248 M (b) 0.0991 M (c) 0.144 M (d) 0.209 M (e) 2.48 M
- 32. What is the pH of a solution that is 0.25 *M* in hypochlorous acid ($K_a = 3.0 \times 10^{-8}$) and 0.35 *M* hypochlorite ion?
 - (a) 4.31 (b) 5.42 (c) 7.38 (d) 7.52 (e) 7.67

33. Combination of equal molar amounts of a weak acid and a strong base yields a solution that
(a) is acidic.
(b) is basic.
(c) is neutral
(d) You must have K_a of the acid to answer this question.

34. What is the solubility product constant, K_{sp} , for lead(II) fluoride, PbF₂, if a saturated solution contains [Pb²⁺] = 0.0021 *M* and [F⁻] = 0.0042?

(a) 2.1×10^{-3} (b) 1.8×10^{-5} (c) 8.8×10^{-6} (d) 1.5×10^{-7} (e) 3.7×10^{-8}

- 35. What is the molar solubility of nickel(II) hydroxide, Ni(OH)₂, if the pH of the solution is 10.00? $(K_{sp} = 6.0 \times 10^{-16})$?
 - (a) 1.5×10^{-8} (b) 6.0×10^{-8} (c) 1.5×10^{-12} (d) 6.0×10^{-12}
- 36. A bidentate ligand is a Lewisthat cantwo electron pairs.(a) base, accept(b) base, donate(c) acid, accept
- (a) base, accept(b) base, donate(c)(d) acid, donate(e) structure, use

Page 7 of 8

lage / 010	
Ν	NAME
For questions 37 through 40 consider the complex $[Co(en)_2F]$	2]NO3.

37. Which of the follo (a) Co	wing species is <u>1</u> (b) en	not in the coordinat (c) F	tion complex? (d) NO ₃	(e) All in
38. What is the geome(a) Octahedral(d) Square Planar or T	etry around the co (b) Squa Setrahedral	entral Co ion? re Planar	(c) Tetrahedral (e) Trigonal Bilinea	ar
39. How many 4d elec (a) 0	ctrons are on cen (b) 1	tral Co ion? (c) 2	(d) 3	(e) 4
40. The number of ur (a) 0	npaired electrons (b) 1	on Co in a low spin (c) 2	n (spin-paired) comple (d) 3	ex would be (e) 4
For questions 41 throu MnO ₄ ⁻ 41.When the reaction (a) MnO ₄ ⁻	agh 44 consider t (aq) + $Cl^{-}(aq)$ is balanced, one (b) Cl^{-}	he reaction: > $Mn^{2+}(aq) +$ finds that the reduction (c) Mn^{2+}	Cl ₂ (aq) (acidic solu cing agent is: (d) Cl ₂	tion) (e) H ₃ O ⁺
42. The number of ele (a) 5	ectrons (n) involv (b) 6	red in the balanced (c) 8	reaction is: (d) 10	(e) 12
43.The potential assoc (a) 14.5	ciated with this re (b) 145	eaction is + 0.15 V (e) 72.5	7. What is the value of (d) -145	f ΔG_{Rxn}^0 (kJ)? (e) -14.5
44. What is the value of (a) 3.8×10^{-26}	of K_{eq} for this rea (b) 6×10^2	ction at 298K ? (c) 1.1	(d) 0.94	(e) 2.6×10^{25}
45. What is the oxidat (a) $2 Br^{-} \rightarrow Br_2 + 2$ (d) $2K \rightarrow 2K^{+} + 2$	tion half-reaction $2KBr(l) \rightarrow 2K(l)$ $2e^-$ (b) Br ₂ $2e^-$ (e) $2H_2C$	for the following I l) + Br ₂ (g) + 2e ⁻ \rightarrow 2Br ⁻ 0 + 2e ⁻ \rightarrow H ₂	REDOX reaction? (c) $2K^+ + 2e^- \rightarrow + 2OH^-$	→ 2K
46. When a uranium-2 nucleus formed is (a) ⁸⁴ Po	238 nucleus (²³⁸ U (b) ²³⁰ Th	U) undergoes 2 alj (c) ²²⁷ U	pha emissions and 2 b (d) 230 Ra (e) 2	eta emissions, the ²²⁸ Pa
 47. What is the name individual nucleor (a) nuclear fission (d) binding energy . 48. How many nucleor 	given to the amo ns? () () () () () () () () () () () () ()	ount of energy it wo b) nuclear fusion e) ionization energ none ¹⁶ O ²⁻ anion?	ould take to separate th (c) electron y	he nucleus into its capture

(a) 16 (b) 8 (c) 10 (d) 26 (e) none of these

Page 8 of 8

NAME

49. Atoms of the sa	ame element with dif	ferent mass numbers ar	e called	
(a) isobars	(b) isotopes	(c) allotropes	(d) isomers	(e) nucleons

50. The half-life of	⁹⁰ Sr is 28 years.	How long will it take for	or a sample of ⁹⁰ Sr	to be 85% decomposed?
(a) 29 years	(b) 77 years	(c) 88 years	(d) 94 years	(e) 110 years.