Chemistry 212 Fall 2022		Test 4		Name:	(Please	print)		
Multiple Choice (5 points each, Put answers in CAPS in the left margin.) $R = 8.314 \text{ J/mol} \cdot \text{K}$ $F = 96,500 \text{ C/mol} = 96,500 \text{ J/mol} \cdot \text{V}$								
1.	Which of the following processes is entropically unfavorable (for the system)?							
	A) Boiling water B) Expanding a g C) Making a hard		D) Scattering seeds in the wind E) The burning of coal					
2.	How much Mg(OH) ₂ ($K_{\rm sp} = 1.8 \times 10^{-11}$) will dissolve in 1.0 L of a 1.0 M HCl solution?							
	A) 0.5 mol B) 1.0 mol		C) 4.5 x 10 D) 1.8 x 10	C) 4.5 x 10 ¹⁴ mol D) 1.8 x 10 ¹⁵ mol		E) 7.4	x 10 ¹⁷ mol	
3.	Which of the following is false about the lead storage battery?							
	 A) A lead plate is the cathode. B) Several cells are hooked together to increase cell potential. C) They are rechargable. D) Sulfuric acid is the solvent in the cell. E) All are true. 							
4.	Which of the following would be an inert electrode?							
	A) Ag	B) Cu	C) H	<u>D</u>)) <u>Pt</u>	E) Zn		
	For the ions: Ag 0.80 -1.60		, H ⁺ , which is ea $+ e^{-} \rightarrow Ag$ $+ 3e^{-} \rightarrow Al$ C) Fe ²⁺ D			$Fe \rightarrow Fe$ $Fe \rightarrow H_2$		
	$\underline{A)} \underline{Ag^+} \qquad \underline{B}$) Al ³⁺	C) Fe ²⁺ D) H ⁺	E) cannot tell	from given	information	
6.	For which of the following geometries is a <i>trans</i> orientation not possible?							
	A) Octahedral B) Square planar		C) <u>Tetrahedral</u> D) Trigonal bipy	ramidal	E) All may	have a trans	s arrangement	
7.	of 3+ and 4+, wh	n p. 1033 of your book, it says that titanium only forms compounds with oxidation numbers 3+ and 4+, which is clearly incorrect. Which of the following is the principal oxidation umber for titanium that the book missed?						
	A) 0	B) +1	<u>C) +2</u>	D)) +5	E) +6		
8.	Which of the following ions is least likely to form colored coordination complexes?							
	<u>A) Au⁺</u>	B) Co ³⁺	C) Cr ³⁺	D)) Cu ²⁺	E) Ni ²⁺		

Discussion questions (You must show your work to receive credit!)

1. The formation constant of $[M(CN)_4]^{2-}$ is 3.42×10^{14} , where M is a generic metal. A 0.150 mole quantity of M(NO₃)₂ is added to a liter of 2.31 M NaCN solution. What is the concentration of M²⁺ ions at equilibrium? (10 points)

$$M^{2+}_{(aq)} + 4 \text{ CN}_{(aq)} \iff M(\text{CN})_4^{4-} \qquad K_f = \frac{[M(\text{CN})_6^{4-}]}{[M^{2+}][\text{CN}^-]^4}$$
initial 0.150 M 2.31 M 0 M
react 0 M 1.71 M 0.150 M
change +x +4x -x
equil x 1.71 + 4x 1.50 - x
$$K_f = \frac{0.150 - x}{(x)(1.71 + 4x)^4} = 3.42 \times 10^{14}$$
Recause $K_f > 1.71$ assume $X_f > 1.71$

Because $K_f >> 1.71$, assume x is negligible

 $Au_{(s)} + O_{2(g)} + CN^{-}_{(aq)} \rightarrow Au(CN)_{2(aq)} + H_2O_{2(aq)}$

$$3.42 \times 10^{14} = \frac{0.150}{(x)(1.71)^4}$$

 $x = 7.6 \times 10^{-16} \implies [M^{2+}] = 5.1 \times 10^{-17} M$

2. Balance the following equation in basic solution by any method you choose. Show and label the balanced half-reactions in basic solution. (12 points, partial credit for balancing in acidic solution)

oxid:
$$[Au + 2 CN^{-} \rightarrow Au(CN)_{2}^{-} + e^{-}] \times 2$$
 redn:
$$[2 H_{2}O + 2 e^{-} + O_{2} \rightarrow H_{2}O_{2} + 2 OH^{-}] \times 1$$

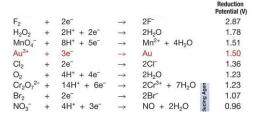
$$2 Au + O_{2} + 4 CN^{-} + 2 H_{2}O \rightarrow 2 Au(CN)_{2}^{-} + H_{2}O_{2} + 2 OH^{-}$$

3. For the half reactions: (12 points)

oxid:
$$[2Cl^{-} \rightarrow Cl_{2} + 2e^{-}] \times 3$$

redn: $[Cr_{2}O_{7}^{2^{-}} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O] \times 1$
net: $Cr_{2}O_{7}^{2^{-}} + 14H^{+} + 6Cl^{-} \rightarrow 2Cr^{3+} + 7H_{2}O + 3Cl_{2}$
Calculate E^{o}_{cell} , ΔG^{o} , and K_{eq} for the net reaction at 25 °C.

$$E_{\text{cell}}^{\circ} = -1.36 \text{ V} + 1.23 \text{ V} = -0.13 \text{ V}$$

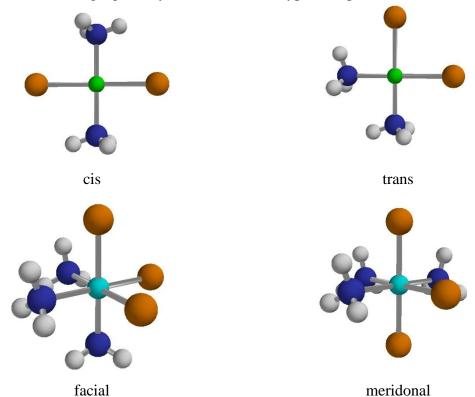

$$\Delta G^{\circ} = -(6 \text{ mol}_{\text{e}})(96,500 \frac{\text{J}}{\text{mol} \cdot \text{V}})(0.13 \text{ V})(\frac{1 \text{ kJ}}{1000 \text{ J}}) = -75.3 \text{ kJ}$$

$$E_{\text{cell}}^{\circ} = \left(\frac{(8.314 \frac{\text{J}}{\text{mol}} \cdot \text{K})(298 \text{ K})}{(6 \text{ mol})(96,500 \text{ J/mol} \cdot \text{V})}\right) \ln K_{\text{C}} = \left(\frac{0.0592}{6}\right) \log K_{\text{C}} = -0.13 \text{ V}$$

$$\ln K_{\text{C}} = -30.4 \qquad \text{or} \qquad \log K_{\text{C}} = -13.5$$

$$K_{\text{C}} = 3.2 \text{ x } 10^{-14}$$

Standard Reduction Potentials in Aqueous Solutions at 25 °C



4. Gallium is produced by the electrolysis of a solution made by dissolving gallium oxide in concentrated NaOH_(aq). Calculate the mass of $Ga_{(s)}$ that can be deposited from a Ga(III) solution using a current of 0.210 A that flows for 20.0 min. (1 C = 1 A•s) (4 points)

$$\begin{aligned} \text{mass}_{Ga} &= (0.210 \text{ A}) \left(\frac{1 \text{ C}}{\text{A} \cdot \text{s}}\right) (20.0 \text{ min}) \left(\frac{60 \text{ sec}}{1 \text{ min}}\right) \left(\frac{1 \text{ F}}{96,500 \text{ C}}\right) \left(\frac{1 \text{ mol}_{Ga}}{3 \text{ F}}\right) \left(\frac{69.72 \text{ g}}{\text{mol}}\right) \\ &= 0.0606 \text{ g} \end{aligned}$$

Homework 17.20

- 5. Provide three significant ways in which transition metals are different from main group metals. (10 points)
 - 1) Their compounds tend to be colored, while main group (MG) compounds are generally white.
 - 2) For any particular metal, they tend to form ions of many oxidation states, while MG metals will form one or two ions.
 - 3) They tend to form complex ions, while MG metals don't.
 - 4) Higher oxidation numbers become more stable down a group, while the reverse is true of MG elements.
- 6. Label the following figures by structural isomer type. (12 points)

