Chemistry 212		Test 1	Name:		
Fall 2022				(Please print)	
Mı R =	ultiple Choice (5 points each, = 8.314 J/mol•K = 0.0821 L•a	Put answers in CAPS in the le tm/mol•K	eft margin.)		
1.	The additional energy added to a solid to cause it to liquefy is called its				
	A) Heat of formation	C) Heat of fusion		E) Heat of liquefication	
	B) Lattice energy	D) Heat of vaporizatio	n	_	
2.	Which of the following has the strongest solute-to-solvent interaction? (Problem 13.4)				
	A) NH_3 in H_2O	C) KCl in H ₂ O	E) (CH ₂ Cl ₂ in CH ₃ OH	
	B) CH_4 in C_6H_6	D) CH_2Cl_2 in C_6H_6			

3. For the compounds CH₄, CH₃Cl, and CH₃OH, what is the correct trend with respect to their boiling points? (Homework 10.10)

A) $CH_4 < CH_3Cl < CH_3OH$	D) $CH_3Cl < CH_3OH < CH_4$
B) $CH_4 < CH_3OH < CH_3Cl$	E) $CH_3OH < CH_4 < CH_3Cl$
C) $CH_3Cl < CH_4 < CH_3OH$	F) $CH_3OH < CH_3Cl < CH_4$

4. Which of the following pairs is unlikely to be miscible?

A) CH_3OH and H_2O	D) CH ₃ OH and CH ₃ CH ₂ OH
B) CH ₃ OH and CH ₃ Br	E) H_2O and $CH_3(CH_2)_4CH_3$
C) CH ₃ Br and H ₂ O	

5. Which of the following would have the highest boiling point? (Homework 11.24)

A) 0.12 <i>m</i> KI	C) 0.30 <i>m</i> NH ₃	E) pure H ₂ O
B) 0.35 <i>m</i> C ₂ H ₅ OH	D) 0.19 <i>m</i> CaF ₂	

- 6. Which of the following is false about colloids?
 - A) They are generally opaque or translucent.
 - B) Brownian motion accounts for the existence and appearance of colloids.
 - C) They are usually composed of very small solid particles suspended in a liquid.
 - D) Filtration is an easy way to separate a colloid.
 - E) Milk, mayonnaise, and shaving cream are common colloids.
- 7. What is the reaction order for the following elementary reaction: $A + B \rightarrow C + D$

A) 1 B) 2 C) 3 D) 4 E) cannot determine from given information

8. The reaction $2 \operatorname{NO}_{2(g)} \longrightarrow 2 \operatorname{NO}_{(g)} + \operatorname{O}_{2(g)}$ is suspected to be second order in NO₂. Which of the following kinetic plots would be the best to do to prove the reaction is second order?

 A) $[NO_2]$ vs t
 C) $[NO_2]^2$ vs t
 E) $\ln[NO_2]^{-1}$ vs t

 B) $\ln[NO_2]$ vs t
 D) $[NO_2]^{-1}$ vs t

Discussion Questions (You must show your work to receive credit):

1. At 1 atm, how much energy is required to heat 57.0 g $H_2O_{(s)}$ at -20.0 °C to $H_2O_{(\ell)}$ at 59.0 °C? Specific heat $H_2O_{(s)} = 2.087 \text{ J/(g·°C)}$ and specific heat $H_2O_{(\ell)} = 4.184 \text{ J/(g·°C)}, \Delta H_{fus}^{\circ} = 6.010 \text{ kJ/mol}$ (8 points)

2. Define viscosity and explain how it changes with changing intermolecular forces. (8 points)

3. At 298 K, the Henry's law constant for oxygen is 0.00130 M/atm. Air is 21.0% oxygen. At 298 K, what is the solubility of oxygen in water exposed to pure oxygen? To air at 1.00 atm? (10 points)

4. A solution of $H_2SO_{4 (aq)}$ with a molal concentration of 2.24 *m* has a density of 1.135 g/mL. What is the molar concentration of this solution? (5 points)

5. One mole of KCl is added to a liter of pure water and one mole of MgF₂ is added to a different liter of pure water. Which has the higher boiling point? Explain your answer (5 points)

5. For the reaction $2 N_2 O_{5(g)} \longrightarrow 4 NO_{2(g)} + O_{2(g)}$, the activation energy and overall ΔE are 100 kJ/mol and -23 kJ/mol respectively. (a) Sketch the energy profile for this reaction. (b) What is the activation energy for the reverse reaction? (9 points)

6. For the reaction $C_5H_{10} + O_3 \longrightarrow C_5H_{10}O_3$ the following data were collected:

$[C_5H_{10}](M)$	$[O_3](M)$	rate (Ms ⁻¹)
0.010	0.0028	2.2
0.0050	0.0028	1.1
0.010	0.010	4.4

- a) What is the rate law for this reaction?
- b) What is the value of the rate constant for this reaction? (15 points)
- c) Could this be an elementary reaction? Explain.