\qquad
Fall 2022
Multiple Choice (5 points each, Put answers in CAPS in the left margin.)
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} \quad F=96,500 \mathrm{C} / \mathrm{mol}=96,500 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{V}$

1. Which of the following processes is entropically unfavorable (for the system)?
A) Boiling water
D) Scattering seeds in the wind
B) Expanding a gas into a vacuum
E) The burning of coal
C) Making a hard-boiled egg
2. How much $\operatorname{Mg}(\mathrm{OH})_{2}\left(K_{\text {sp }}=1.8 \times 10^{-11}\right)$ will dissolve in 1.0 L of a 1.0 M HCl solution?
A) 0.5 mol
B) 1.0 mol
C) $4.5 \times 10^{14} \mathrm{~mol}$
D) $1.8 \times 10^{15} \mathrm{~mol}$
E) $7.4 \times 10^{17} \mathrm{~mol}$
3. Which of the following is false about the lead storage battery?
A) A lead plate is the cathode.
B) Several cells are hooked together to increase cell potential.
C) They are rechargable.
D) Sulfuric acid is the solvent in the cell.
E) All are true.
4. Which of the following would be an inert electrode?
A) Ag
B) Cu
C) H
D) Pt
E) Zn
5. For the ions: $\mathrm{Ag}^{+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{2+}, \mathrm{H}^{+}$, which is easiest to reduce?

0.80 V	$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	-0.44 V	$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$
-1.66 V	$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$	0.00 V	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
B) Al^{3+} C) Fe^{2+} D) H^{+} E) cannot tell from given information			

6. For which of the following geometries is a trans orientation not possible?
A) Octahedral
C) Tetrahedral
E) All may have a trans arrangement
B) Square planar
D) Trigonal bipyramidal
7. On p. 1033 of your book, it says that titanium only forms compounds with oxidation numbers of $3+$ and $4+$, which is clearly incorrect. Which of the following is the principal oxidation number for titanium that the book missed?
A) 0
B) +1
C) +2
D) +5
E) +6
8. Which of the following ions is least likely to form colored coordination complexes?
A) Au^{+}
B) Co^{3+}
C) Cr^{3+}
D) Cu^{2+}
E) Ni^{2+}

Discussion questions (You must show your work to receive credit!)

1. The formation constant of $\left[\mathrm{M}(\mathrm{CN})_{4}\right]^{4-}$ is 3.42×10^{14}, where M is a generic metal. A 0.150 mole quantity of $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a liter of 2.31 M NaCN solution. What is the concentration of M^{2+} ions at equilibrium? (10 points)
2. Balance the following equation in basic solution by any method you choose. Show and label the balanced half-reactions in basic solution. (12 points, partial credit for balancing in acidic solution)
$\mathrm{Au}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{CN}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Au}(\mathrm{CN})_{2}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
3. For the half reactions: (12 points)
oxid: $\left[2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}\right] \times 3$
redn: $\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\right] \times 1$
net: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}$
Calculate $\mathrm{E}_{\text {cell }}^{\mathrm{o}}, \Delta \mathrm{G}^{\mathrm{o}}$, and $K_{\text {eq }}$ for the net reaction at $25^{\circ} \mathrm{C}$

Standard Reduction Potentials in Aqueous Solutions at $25{ }^{\circ} \mathrm{C}$

			Reduction Potential (V)
$\mathrm{F}_{2}+2 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{~F}^{-}$	2.87
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}$	1.78
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightarrow	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-}$	\rightarrow	Au	1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{Cl}^{-}$	1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}$	1.23
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	1.23
$\mathrm{Br}_{2}+2 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{Br}^{-}$	
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightarrow	$\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	弟

4. Gallium is produced by the electrolysis of a solution made by dissolving gallium oxide in concentrated $\mathrm{NaOH}_{(\mathrm{aq})}$. Calculate the mass of $\mathrm{Ga}_{(\mathrm{s})}$ that can be deposited from a Ga (III) solution using a current of 0.210 A that flows for 20.0 min . ($1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$) (4 points)
5. Provide three significant ways in which transition metals are different from main group metals. (10 points)
6. Label the following figures by structural isomer type. (12 points)

