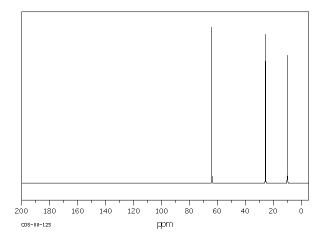
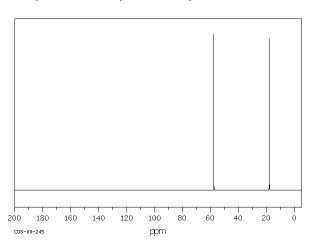
Homework 8

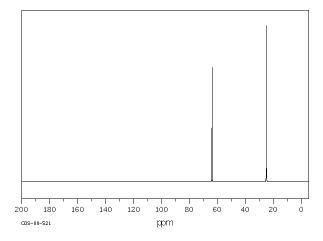
1.	Nuclear Overhauser Effect, NOE, is:				
	a) the name given to the reason magnetic moment precess in a magnetic field.b) the effective coupling between one nuclei and a neighboring nuclei.c) the enhanced intensity one gets in a C-13 spectrum when the H attached to it is decoupled d) the effect one gets by giving a nuclei a 180 degree pulse.				
2.	For a proton spectrum on a 60 MHz instrument, 1 ppm corresponds to Hz.				
For 3.	problems 3-5. Consider the NMR of 3-pentanone (CH_3CH_2)CO [or $CH_3CH_2C(O)CH_2CH_3$]. The proton spectrum will consist (from high chemical shift to low):				
	 a) a singlet, and a multiplet (splitting greater than 4) and a triplet b) a quartet, and a triplet. c) a two doublets and two triplets d) two triplets and two quartets e) a triplet, and a doublet 				
4.	From the highest chemical shift to the lowest, integration of the peaks in the proton spectrum will be:				
	a) 2:3 b) 2	2:2:3:3	c) 1:2:3	d) 3:2:2:3	e) none of these
5.	The decoupled carbon spectrum will consist of peak(s).				
	a) 2 b) 3	3	c) 4	d) 5	e) none of these
6.	The proton frequency on a magnet with a field of 200 MHz is 46000 gauss. What is the field strength on an instrument when the proton frequency is 60 MHz?				
	a) 13800 gauss	b) 15333	33 gauss	c) 4140 gauss	d) none of these
Co	Consider ethyl benzene; C ₆ H ₅ CH ₂ CH ₃ (a) (b) (c)				
7.	The b protons in the proton spectrum will be :				
	a) a 1:2:1 triplet b) a 1:3:3:1 quarte c) a 1:1:1 triplet	t		d) a 1:1 doublet e) none of these	
8.	The c protons in the proton spectrum will be :				
	a) a 1:2:1 triplet b) a 1:3:3:1 quartet c) a 1:1:1 triplet			d) a 1:1 doublet e) none of these	
9.	In the decoupled C-13 spectrum the 6 carbons of the phenyl ring will show up as :				
	 a) 6 peaks of equal intensity b) 5 peaks of equal intensity and one of low intensity c) 4 peaks of equal intensity d) 4 peaks- two of larger intensity and two of lower but not necessarily equal intensity 				


10-12 Match these alcohols and their C-13 spectra.

_____CH₃CH₂OH ethanol


CH₃CH₂CH₂OH 1-propanol (*n*-propyl alcohol)

 $(CH_3)_2$ CHOH 2-propanol (*i*-propyl alcohol)


Spectrum A – all peaks of equal size

Spectrum **C** – peaks of equal size

Spectrum **B** – right peak twice height of left

