Alkanes Homework Key

Draw the structures of the following alkanes. Use both groups connected to each other and stick structures. For example:

propane $CH_3 - CH_2 - CH_3$ $\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\$ octane CH₃ CH CH₂CH₂CH₂CH₂CH₃ 2-methylpentane CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{2} CH_{2} CH_{3} CH_{3} CH_{2} CH_{3} CH_{3} C3-ethyl-4-propyloctane CH₂ CH₃ CH_{3} CH_{3} CH_{3} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{2} CH_{3} 3-t-butylhexane CH₃. 5-s-butyldecane CHa $CH_{3} CH_{1} CH_{3} CH_{1} CH_{3} CH_{1} CH_{2} CH_{3}$ 3-isopropylpentane CH₃ H_2C ethylcyclobutane 1-*i*-isobutyl-4-methylcyclohexane $CH_3 - CH_2 -$

What is the correct systematic name (both new & old (if applicable)) for the following structures?

 $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$ n-hexane

What is wrong with the following name for the associated structure? Fix the problem.

2-methyl-4-isopropyl pentane The chain is actually 6 carbons long. Therefore, the name is 2,3,5-trimethylhexane.