
Chapter 11 – Coordination Chemistry: Bonding, Spectra, and Magnetism 

Read through the top of p. 391 on your own.  This is a description of the beginnings of modern 

inorganic chemistry.  It is mostly history, but there is some interesting chemistry in there as well.  

You will be able to see the logic of how Alfred Werner was able to figure out the structures of 

coordination complexes with no modern spectroscopic or crystallographic instrumentation. 

Bonding in Coordination Compounds & Valence Bond Theory 

Read to the top of p. 393 on your own.  With the exception of the hybridization scheme that 

leads to square planar geometry (sp2d), this is review. 

The Electroneutrality Principle and Back Bonding  

Before we begin this section, here are three important definitions. 

coordination complex - a molecule or ion in which a metal atom is covalently bound to one 

or more ligands. 

ligand - a molecule, atom, or ion that is covalently bound in a coordination complex. Nearly 

all ligands donate 2 electrons. 

coordinate covalent bond – a covalent bond that results from one of the atoms providing all 

of the electrons in a bond.  It is sometimes called a dative bond. 

Consider a generic coordination complex, MLn
2+ where the ligands are neutral 2 electron 

donors.  Since all of the electrons in a coordinate covalent bond come from one of the atoms, 

formal charges suggest that each bond should place a -1 charge on the M2+. 

 

For an octahedral complex, 

 

 

 

this would yield a formal charge of -4 on the metal of an octahedral complex.  How can this be?  

As you would probably guess, since donor atoms on the ligand are more electronegative than the 

metal, they do not share their electron density equally.  Calculations suggest that the ligands help 
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to lower the charge on the metal from its oxidation state, by spreading it out over several atoms, 

but not by so much as to place significant negative charge on the electropositive metal center.  The 

closer the oxidation number of a metal is to zero, the closer will its actual charge be to zero.  As 

you can see in the example for Be2+ and Al3+ (p. 394), the actual charges wind up very near zero.  

For OsO4, where the oxidation state is +8 the actual charge on osmium may be as high as only +1 

to +2.  As a result, metal-ligand bonds are typically about 50% covalent in character and 50% 

ionic. 

A second way to remove electron density from a metal center is called back-bonding.  If a 

metal atom has electron density in its d-orbitals, the electron density may be transferred to a ligand 

through the latter’s  orbitals, e.g. CO. 

:C O * orbital

 

This feeding of electron density into * orbitals on the ligand affects bond lengths in the 

complex.  The M-C bond will shorten, while the C-O bond will lengthen.  This can be easily seen 

using VB resonance structures. 

 

The more electron rich a metal is, the more the right-hand form contributes to the actual structure.  

We can see this empirically through crystal structures and infrared spectroscopy (vide infra). 

Crystal Field Theory 

This is a relatively simplistic theory that does an amazingly good job of making predictions 

about complexes.  Unfortunately, most of its underlying assumptions are wrong, even if their 

application works.  It turns out the errors just about cancel each other out. 

Crystal field theory treats the metal atom as a point charge with five d orbitals.  The ligands 

are also treated as negative point charges.  Thus, the bonds are thought of as purely ionic in 

character.  The book shows representations of the d orbitals on pp. 396-97.  You should commit 

these to memory.  There is also discussion about the fact that mathematically one can come up 

-M  :CO:+    M=C=O:
..
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with 6 equations to describe d orbitals.  This should be a bit of a review from earlier in the semester.  

Recall that the dxy, dxz, dyz, and dx2-y2 orbitals all look the same because mathematically the only 

difference between them is their orientation in space.  The dz2 orbital looks different because it is 

the average of the two remaining mathematical functions.  The “doughnut” traditionally shown in 

general chemistry texts is inaccurate.  The shape is more akin to a teardrop rotated around the 

nucleus with the tip pointing towards the metal.  The averaging causes the lobes along the z-axis 

to be larger (i.e. thicker) than the torus.  Henceforth, the d orbitals will be designated by their 

subscripts (i.e. xy = dxy). 

Crystal Field Effects: Octahedral Symmetry 

In your mind's eye imagine 6 ligands interacting with a d1 metal ion.  As I hope you will see, 

if this works for a d1 metal ion, it will work for any transition metal atom or ion.  How do we 

arrange the ligands?  If you think “VSEPR,” they lie on opposite ends of the coordinate axes, at 

an infinite distance from the origin.  The transition metal ion resides at the origin. 

Where is the transition metal d electron?  It spends 1/5 of the time in each orbital in the absence 

of an outside interaction.  What happens as we bring the ligands towards the metal ion?  Two 

opposing things: (i) M+-ligand attraction lowers the energy of d-orbitals and (ii) electron-electron 

repulsion raises the energy of the d-orbitals.  Let’s start with point (ii). 

As the ligands approach the ion, their electrons repel the metal d electron.  Repulsion is 

greatest in orbitals lying along the x, y, and z axes (z2, x2-y2) and less in the orbitals directed 

between the axes (xy, xz, yz).  Thus, the orbitals are split in relative energies. 

As you might guess, the electrons in all orbitals are repelled; so all orbitals increase in energy.  

When factor (i) is added in, all orbitals lower in energy.  Now let’s step back for a minute.  Instead 

of 6 discreet ligands, imagine the pairs of electrons as smeared out in a spherical shell around the 

metal atom.  If the shell were contracted all 5 orbitals would increase in energy at exact equal rates.  

Now, the 6 ligands described above are distributed spherically.  (i.e. They come as close as 6 

ligands can to simulating a spherical distribution.)  As a result, the average energy of the d orbitals 

in the real complex is the same as the average energy of the d orbitals in the hypothetical complex 
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(called the barycenter).   

So what does this mean?  When the metal-ligand electrostatic attractions are figured in, the 

xy, xz, and yz orbitals go down in energy relative to the average and the z2 and x2-y2 go up.  

Importantly, the total energy decrease of the xy, xz, and yz orbitals exactly equals the total energy 

increase of the z2 and x2-y2.  Individually, xy, xz, and yz orbitals drop below the average by 2/5 O 

and z2 and x2-y2 increase by 3/5 O.  This can be seen pictorially as: 

O
2
5 O

3
5O

t2g

eg

 

Finally, these groups of degenerate orbitals are “named” t2g for the lower energy orbitals and 

eg for the higher energy orbitals.  The labels come from group theory.  To generate the labels, begin 

with the molecular point group Oh.  Since there are three equal energy orbitals, they must belong 

to a “T” irreducible representation (T1g, T2g, T1u, and T2u exist for Oh).  Then, treating the three 

orbitals as a group, perform the various symmetry operations and keep track of the results.  They 

will generate a set of characters identical to one of the irreducible representations, in this case t2g.  

Crystal Field Stabilization Energy 

Now that we see that the d orbitals split in energy and why they do so, we need to explore 

how the orbitals fill.  All of the examples in this section possess an octahedral coordination 

geometry. 

In the case of a one electron (d1) atom or ion, the answer is simple: the electron drops into the 

t2g set.  This electron is more stable than in the free ion by 0.4O.  This stabilization is called the 

crystal field stabilization energy (CFSE).  O is measured from the electronic spectrum (UV-

visible) where the t2g  eg transition is observed. 

Likewise in d2 and d3 complexes, the second and third electrons go into the t2g set with CFSEs 

of 0.8O and 1.2O, respectively.  So far this is just like filling the 2p orbitals from boron through 

nitrogen.  Now things get interesting. 
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What happens with d4?  The electron may go into either the t2g or eg set depending on the 

magnitude of O.  We will talk about this more later, but, in a nutshell, ligands with strong 

associations/attractions to metal ions have larger Os than those with weaker associations.  We’ll 

discuss the nature of these associations shortly (Factors Affecting the Magnitude of O).  If O is 

greater than the spin pairing energy, P, the electron goes into the t2g set.  Conversely if P  O the 

electron goes into the eg.  O  P is called the strong field or low spin case and P  O is the weak 

field or high spin case.  We begin with the latter scenario. 

The filling for d4 is (t2g
3 eg

1).  Thus, CFSE = (3*0.4O - 1*0.6O) = 0.6O.  For d5, 

CFSE = 0 because the fifth electron also goes into the eg.  For d6, the next electron goes into t2g so 

CFSE = 0.4O.  For d7, CFSE = 0.8O.  Let’s stop here and go back to the low spin case.  (It merges 

with the high spin configuration at d8.) 

The d4 case looks like , so CFSE = 1.6O - P.  For d5, CFSE = 2.0O - 2P.  d6 yields 

a result that is a little surprising at first glance.  It’s CFSE = 2.4O - 2P.  Why not -3P?  For the 

same reason you do not subtract 1P from the high-spin d6 case.  Remember we are measuring 

CFSE relative to the unsplit case.  In the unsplit case d6 would have one spin paired anyway, so 

only the additional paired spins are counted.  (The book is in error here.)  For d7 CFSE = 1.8O - 

P (6*0.4O - 1*0.6O). 

Once eight electrons are placed in the orbitals, the low-spin and high-spin configurations are 

identical and the labels no longer are relevant.  Thus, high and low spin applies only to d4-d7.  In 

d8 complexes CFSE = 1.2O, d9:  CFSE = 0O, d10: CFSE = 0.   

Tetrahedral Symmetry 

We can use the same approach here as for octahedral symmetry.  The ligands are placed on 

alternating corners of a cube and are then brought in towards the metal ion.  If the coordination 

axes are passed through the faces of the cube, then the incoming ligands will interact more strongly 

with the xy, xz, and yz orbitals than z2 and x2-y2 orbitals.  Thus, the splitting will be reversed. 

 



 
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T
2
5 T

3
5 T
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e

note the changes in labels

 

Note that because the point group is now Td, the labels have changed slightly.  The presence 

of only four ligands causes T to be smaller than O under almost all conditions.  That the ligands 

do not exactly align with the orbitals, also reduces the value of T versus O.  This causes 

tetrahedral complexes to be almost exclusively high spin. 

Tetragonal Symmetry:  Square Planar Complexes 

The book mentions the Jahn-Teller effect here, we both will put it off for a while.  The easiest 

way to think about square complexes is as octahedra with one pair of trans ligands removed.  

Mathematically, it is easiest to remove the two ligands on the z-axis.  When this happens, orbitals 

with a z component drop in energy.  To maintain the barycenter, those without a z component 

increase in energy by an equal amount.  

The spacing of energy gaps is somewhat different for square planar complexes than for the 

two previous cases.  One might conclude from the discussion on tetrahedral complexes that the 

top-to-bottom gap would be small because there are only 4 ligands.  That is only partially true.  

For the four orbitals that don’t point at the ligands (xy, xz, yz, z2) the splitting is indeed small (see 

Table 11.5, p. 405 for details).  The x2-y2 orbital, however, bears the full brunt of the repulsion in 

the complex and is therefore elevated in energy by a significant amount.  Furthermore, since there 

are now four energy levels the gaps between any two tend to be fairly small. 

Factors Affecting the Magnitude of  

All of these factors will have something in common:  the stronger the Mn+-L interactions, the 

xy

xz, yz

z2

x2-y2

  spherical
coordination

 octahedral
coordination

  tetragonal
coordination
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larger will be . 

Metal ion oxidation state -  increases with oxidation state, higher charged ions draw ligands 

in closer. 

Nature of Mn+ - increases down a group for Mn+ with constant charge.  Probably because 

there is more overlap with larger d-orbitals.  (Note that this trend is opposite 

to what occurs for main group elements.) 

Number and Geometry of Ligands -  increases with increasing number of ligands - as 

discussed previously 

Nature of Ligands - memorize the basic outline of the spectrochemical series I-  Br-  Cl-  

F-  O2-  H2O  N compounds  alkyls/aryls  CN-  CO.  This ordering 

is generally true although there are exceptions depending on the metal.  

Note this is the reverse from what is expected in crystal field theory.  We 

will talk about why later. 

Applications of Crystal Field Theory - Skip, pp. 408 – 413 (top) 

Molecular Orbital Theory 

The notion that metal-ligand interactions are purely ionic is clearly inaccurate (c.f. 

electroneutrality, vide supra).  In fact, for most ligands the interactions are primarily covalent (e.g. 

neutral ligands) and there is significant experimental evidence consistent with this assertion.  In 

fact, the spectrochemical series is essentially backwards from what it should be for a reasonable 

prediction based on the assumptions of crystal field theory.  The book discusses this briefly.  Read 

it on your own.  

Octahedral Complexes 

The MO diagram of an octahedral complex probably seems like it would be very difficult to 

construct.  In fact, it is not so hard to generate.  The first question to ask is: what orbitals are 

involved?  The 6 ligand  donors and the 3d, 4s, and 4p orbitals on the metal (this is for a first-

row transition metal with six 2-electron donor ligands). 

The ligands can be treated in terms of ligand group orbitals (see pp. 175 - 182 to review).  
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We’ve already seen that the metal d orbitals can be broken into eg and t2g sets.  The 4s orbital is 

spherically symmetrical and will be described by the A1g irreducible representation (with a sphere 

any operation will give back a sphere, therefore all characters in the reversible representation will 

be 1).  Given the high symmetry of an octahedron, it’s a good bet that the p orbitals would be 

treated together.  They yield a T1u irreducible representation (think a sphere with one half-positive, 

the other half negative).  The lobes on the ligands used to donate to the metal may have positive 

or negative signs on the wave function.  These signs are used to make up the group orbitals.  The 

ligands generate a reducible representation that can be broken into A1g, Eg, and T1u irreducible 

representations.  The LGOs are displayed on p. 416.   

 

Note here the t2g set does not change in energy.  This is because there is no net  bonding with 

the ligand orbitals (see p. 415, Fig. 17).  These are non-bonding orbitals. 

When filling the MO diagram remember the ligands will contribute 12 electrons (6*2e-) so the 

a1g, t1u, and eg sets will always be filled.  Filling of the t2g and eg* will depend on the number of 

the metal d electrons.  A result is that the same final d orbital pattern is generated as existed for 

crystal field theory.  The crystal field eg orbitals become eg* orbitals in molecular orbital theory.  

Be sure to remember this distinction. 

Tetrahedral and Square Planar complexes 

Read this section on your own. You are not required to memorize these MO diagrams, but 

understand how they are constructed. 

t2g

eg

3d

4s

4p

ligands

eg*

a1g

a1g*

t1u

t1u*
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Pi Bonding and MO Theory 

Your book only looks at an octahedral system but -bonding also exists for tetrahedral and 

square planar complexes.  The MO treatment for these systems is very similar to what is observed 

for an octahedral system.   

First, there are four plausible L-M -interactions: p-d, d-d, *-d, *-d.  The book gives 

examples of each in Table 11 on p. 421. The p-d interaction involves ligand-to-metal  donation 

while the other three are metal-to-ligand  donations. -bonds will involve the t2g set, not the eg*. 

This is because the eg* orbitals point directly at the ligands and are set up for  overlap. See 

pictures on p. 420. 

The direction of electron donation and the energy levels of ligand -bonding orbitals will have 

a pronounced effect on molecules.  We will consider a molecule with six -donor ligands (e.g. 

halide ions) and then 6 -acceptor ligands (e.g. CO). 

MX6
n-: The halide p orbitals are lower in energy than the metal d orbitals and they are filled, 

while metal d orbitals may or may not contain electrons. Thus: 

t2g

eg*
eg*





t2g

t2g*

t2g

O

 

When the MOs form the ligand p electrons fill the t2g orbitals, thus metal t2g electrons go into the 

t2g* MOs.  The result of this type of interaction is a small O. 

M(CO)6: The CO * orbitals are empty and are high in energy (remember CO bond energy). 

t2g

eg*
eg*

t2g

t2g*

t2g

O

 

Since the CO * orbitals are empty, the t2g MO is filled with metal t2g electrons and promotion is 
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then a relatively high energy process. 

These diagrams explain the relative placements of the halides and CN-/CO in the 

spectrochemical series.  In an electrostatic model, the reverse would be expected. 

Experimental Evidence For Pi Bonding 

So what evidence is there for -bonding (i.e. what do we look for)?  We begin by asking what 

would the interaction look like without -bonding?  Then, what happens with full -bonding:   

M-L  M=L 

Since the bonding between metal and ligand changes between these forms, bonding within the 

ligand must change (see the figures on p. 2 of these notes).   If electron density is fed into a  or  

orbital on the metal, a bond within the ligand will be weakened.  The strongest evidence for -

bonding comes from metal-carbonyl complexes. 

Crystallography - The greater the extent of -backbonding, the more M=C character there will 

be and the more CO will resemble C=O.  The difference in CO and C=O bond lengths is about 

0.1 Å and should be useable for quantification.  Unfortunately, this has not been observed.  In 

contrast, M-C bond lengths do change. 

Consider the complexes Cr(CO)6 and Cr(CO)5(PR3).  In the absence of -backbonding the 

Cr-C bond lengths should be the same.  If it does occur, then the bond lengths should be shorter in 

Cr(CO)5(PMe3).  Why?  Two reasons:  PMe3 is at best a very poor -acceptor so only 5 COs are 

competing for electron density from the metal, not 6; and PR3 is a very good  donor, CO is not.  

Thus, the Cr has more electron density to share with fewer acceptors.  One other trend is expected.  

The Cr-C(O) bond trans to PR3 should be shorter than those cis.  This is because the trans CO will 

bind to the same d-orbital as the PR3 and the effect will be greatest there.  As can be seen in Table 

12, p. 427 all of this is observed.  

Infrared Spectroscopy 

Evidence for C=O character is most clearly seen in IR spectroscopy. (CO) for CO is about 

2150 cm-1, while in R2C=O (C=O) is about 1700 cm-1.  Thus, the greater the extent of 

backbonding the lower the expected (CO).  This is seen dramatically for two series of complexes 
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M(CO)6n+/- and M(CO)4
n+/- in Table 13 on p. 428.  This can also be seen when a CO is substituted 

for by another ligand as seen in crystallography.  The only problem with using this technique is 

that the CO stretching band is almost always split into several components making interpretation 

difficult.  Read the section in the book on IRs of substituted complexes.  Skip the subsection on 

photoelectron spectroscopy (pp. 431 - 433). 

Electronic Spectra of Complexes/Tanabe-Sugano Diagrams - Skip pp. 433-447 

Tetragonal Distortions from Octahedral Symmetry 

The sections we just passed over, discussed how energy levels are affected by having different 

ligands bound to the central metal atom or ion.  As I said earlier, this is more complex than we need 

to get into, however energy level distortions can occur even if the ligands are all the same. 

The Jahn-Teller theorem predicts these distortions.  It states that for a non-linear molecule in 

a non-degenerate state, the molecule must distort such that the symmetry of the molecule is 

lowered, the degeneracy is removed, and the energy of the molecule is lowered. 

So what does this mean?  First, a non-degenerate state is one in which all sets of orbitals are 

not full, empty, or half-full (e.g. 1 or 2 electrons in t2g or 1 electron in eg*).  Let's assume for a 

moment you have 1 electron in an eg set.  That electron spends 50% of the time in the z2 and 50% 

of the time in the x2-y2.  Now what would happen if the two z-axis ligands were pulled slightly 

away from the metal?  The x and y axis ligands would be pulled in a little closer to replace lost 

electron density.  With the z2 ligands further away the z2 drops in energy.  The x2-y2 will rise in 

energy by an equal amount because its ligands are drawn closer.  The reverse may also happen.  

That is: z ligands move in and x, y ligands move out.  There will also be an effect on the t2g set 

(Fig. 47, p. 450).  This is shown graphically below. 

 

 

 

 

 

octahedral z inz out

t2g

eg*

xy

xz, yz
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x2-y2
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Note the average energy of each split set equals the energy of the unsplit set.  These splittings 

are quite small and so do not affect pairings.  Altering spin pairings could conceivably happen in 

a d4 case where to avoid spin pairing energy the fourth electron moved into a lowered eg* orbital.  

However, the square planar geometry can be viewed as an extreme Jahn-Teller distortion with the 

z-ligands moved to infinite distance. 

Finally, the number of electrons in a t2g set will govern the type of distortion:  1e-, 4e- (LS), 

or 6e- (HS) z out and 2e-, 5e- (LS), or 7e- (HS) z in.  What about the eg* set?  This brings us to an 

important point about the Jahn-Teller theorem.  It tells us neither the type, nor the size of the 

distortion, only that it will occur with the proviso that the center of symmetry will remain.  For the 

eg set, either distortion can occur, depending on the complex. 

The book briefly discusses some experimental evidence for Jahn-Teller distortions.  Read it. 

Charge Transfer Spectra 

The previous discussion centered on d-d transitions.  That is, transferring an electron from 

one metal d based orbital to another (e.g. t2g  eg*).  But other types of electron promotions can 

occur.  For an electron in a metal-based MO excited to a ligand-based MO the electron is 

effectively moved from the metal to the ligands.  This is called a metal-to-ligand charge transfer 

(MLCT).  The converse is a ligand-to-metal charge transfer (LMCT). 

LMCT are favored for metals in high oxidation states that are bound to electron-rich, low 

electronegativity ligands.  MLCT is favored for electron metals bound to ligands with low-lying  

orbitals (e.g. CO, heteroarenes (e.g. pyridine)).  These complexes are frequently highly colored. 

A functional use of these compounds is as photoreducing agents.  Basically, an electron is 

promoted to a high-energy excited state by shining light on the compound, which then transfers 

the electron to another species.  Following this, two things can happen: (i) the electron can return 

to the first molecule or (ii) if either molecule undergoes some irreversible rearrangement the 
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electron transfer becomes permanent. 

ML ML ML MAn
h
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n           * [ ] [ ] ?  

When applicable, this method has advantages over traditional methods: (i) The reducing 

power can be varied by promoting into different energy levels.  That is, the higher the electron is 

promoted, the more powerful the complex is as a reductant and (ii) the reaction can easily be 

stopped in progress by simply turning the light off. 
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