
Chapter 10 

6.1 Introductory Remarks 

All molecules in the liquid, gas, or solution phases are in constant motion.  That motion is 

generally divided into translational, rotational, and vibrational motions.  The first two are largely 

absent in the solid state.  Vibrational motions are observable in the infrared region of the 

electromagnetic spectrum via infrared and Raman spectroscopies. 

Prior to taking physical chemistry, you probably thought bond vibrations occur randomly.  

Because the center of mass in a molecule cannot change during a vibration, vibrations occur 

fixed patterns and the number of possible collections of vibration is limited for each molecule.  

One other thing should be mentioned.  The term vibration is used loosely here.  It includes the 

back-and-forth movements, in- and out-of-plane movements (e.g. ring puckering), and bond 

angle changes (scissoring).   

 

6.2 The Symmetry of Normal Vibrations 

Molecules of more than two atoms display an apparently convoluted pattern of internal 

motion (vibration) to the observer.  The apparent randomness of the motions gets worse as the 

molecules contain larger numbers of atoms.  This can be seen for three simple molecules SO3, 

H2O, and CO2 at http://jchemed.chem.wisc.edu/JCEWWW/Articles/WWW0001/index.html 

which shows both individual vibrations and multiple vibrations superimposed.  Another website, 

http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm, shows uncoupled normal mode 

vibrations for a number of molecules. 

As you know there are 3n-6 modes of vibration (different kinds of vibration) within a 

molecule, unless it is linear and then there are 3n-5 modes.  This is because with 3 vectors (x, y, 

http://jchemed.chem.wisc.edu/JCEWWW/Articles/WWW0001/index.html
http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm
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z), there are 3n ways each atom can move.  Six modes are subtracted for translation and rotation 

along the x, y, and z axes.   

On p. 306 the books shows the normal modes of vibration (ground state) for CO3
2-.  You are 

not expected to be able to predict these.  It also provides a key explaining how to interpret the 

symbolism.  Read over the rest of the section.  It explains how to assign irreducible 

representations to normal modes and works through the E irreducible representation for you.  

You should verify that the A1′ and A2″ modes are, in fact, correctly assigned on your own. 

 

10.3 Determining the Types of Normal Modes 

We noted earlier that there are 3n-6 normal vibrational modes for a typical molecule, in 

addition to 3 translational and 3 rotational modes.  The process of determine them begins with 

choosing a molecule, determining its point group, and placing a set of 3 vectors.  The vectors 

should point along sets of aligned coordinate axes (see Figure 10.3 for an example). 

Your book works through the carbonate ion.  I’ll do PtCl−2
4 .  First draw a picture and go 

through the steps just described.  The point group is D4h. 
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Now apply the C4
1 axis (clockwise looking down from +z) to the molecule, what happens?  

On the platinum, zPt remains the same, but yPt becomes xPt and xPt becomes –yPt.  On the 

chlorines, z1 becomes z2, y1 becomes x2, and x1 becomes –y2.  Similar changes occur for the 

other 3 atoms.   
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The technically proper way to solve this problem is to construct a 15 x 15 matrix and enter 

values that describe the movement of these vectors, but as the book demonstrates, any vector 

whose base moves, yields an off-diagonal element in the matrix.  Since only the character 

(diagonal) matters, solving problems is greatly simplified by ignoring any vector that moves to 

another location.  We only need worry about vectors that either remain in place or rotate about 

their base.  From the last paragraph, we thus ignore the vectors on the chloride ions, but must 

consider all three on the platinum ion. 

For the platinum vectors, we see that the x and y vectors are coupled to each other, but that 

the z vector remains independent. Now apply the standard matrix from p. 72 to generate the 

value of the character.  This yields the matrix: 
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Thus, the character for the matrix arising from applying C4 is 1.  For the C2 axis, the matrix 

yields a character of -1. 
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This process can be simplified further. As you can see a vector that remains in place 

generates a character of +1, one that rotates 90º a character of 0, while a 180º shift generates a -1.  

Thus, if you remember this, the matrices are needed only for shifts involving other angles. 

With this in mind, we can generate the reducible representation for this entire molecule.  

We’ll assume that C2 coincides with the C4 axis, the C2′ and σv lie along bonds, and C2″ and σd 

lie between them. 
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 D4h E 2C4 C2 2C2′ 2C2″ i 2S4 σh 2σv 2σd 

 Γ3n 15 1  -1 -3 -1 -3 -1 5 3 1  

Now go through the standard process to determine the make-up of this reducible representation. 

Γ3n = A1g + A2g + B1g + B2g + Eg + 2A2u + B2u + 3Eu 

But some of the irreducible representations will be assigned to translations and rotations.  From 

the character table you can see that the x, y, and z translations transform as A2u and E1u, while 

the rotations transform as A2g and Eg.  Removing these from the irreducible representations for 

all motion leaves: 

Γ3n-6 = A1g + B1g + B2g + Eg + A2u + B2u + 2Eu 

Thus, we have determined the irreducible representation for all vibrations 

 

10.4 Contributions of Particular Internal Coordinates to Normal Modes 

It would be nice to be able to subdivide the vibrations into their various subdivisions (e.g. 

stretches, bends, and plane deformations).  Not surprisingly, this can be done.  We’ll begin with 

stretches and that requires us to draw a different picture than is used for generic motion. 
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where ∆n represents a Pt-Cl bond stretch

 

Since we’re looking at specific motions (i.e. the in-out motion of a particular bond) there are 

only two possible values for the characters 1 and 0.  If a vibration does not move it has a 

character of one, if it moves it is zero.  So for all of the stretches we determine: 
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 D4h E 2C4 C2 2C2′ 2C2″ i 2S4 σh 2σv 2σd 

 ΓPt-Cl 4 0  0 2 0 0 0 4 2 0  

ΓPt-Cl yields A1g + B1g + Eu.  The results in 2 questions:  What do the modes look like, and which 

are IR active and which Raman active?  To answer the first question we need to use a projection 

operator.   

1gAPˆ  = ∆r1 + (∆r2 + ∆r4) + ∆r3 + (∆r1 + ∆r3) + (∆r2 + ∆r4) + ∆r3 + (∆r2 + ∆r4) + ∆r1 + (∆r1 + ∆r3) + 

(∆2 + ∆r4) 

  = 4∆r1 + 4∆r2+ 4∆r3 + 4∆r4 

  ≈ ∆r1 + ∆r2 + ∆r3 + ∆r4  (which is what you’d predict for something total symmetric) 

1gBPˆ  = ∆r1 – 2(∆r2 + ∆r4) + ∆r3 + (∆r1 + ∆r3) – (∆r2 + ∆r4) + ∆r3 – (∆r2 + ∆r4) + ∆r1 + (∆r1 + ∆r3) – 

(∆r2 + ∆r4) 

  = 4∆r1 – 4∆r2 + 4∆r3 – 4∆r4 

  ≈ ∆r1 – ∆r2 + ∆r3 – ∆r4   

uEPˆ  = 2∆r1 – 2∆r3 – 2∆r3 + 2∆r1  

  = 4∆r1 – 4∆r3 

 ≈∆r1 – ∆r3   

There exists an equivalent projection:  ∆r2 – ∆r4, which should seem reasonable by now.  These 

may be added or subtracted: 

(∆r1 – ∆r3) + (∆r2 – ∆r4) = ∆r1 + ∆r2 – ∆r3 – ∆r4 

or  

(∆r1 – ∆r3) – (∆r2 – ∆r4) = ∆r1 – ∆r2 – ∆r3 + ∆r4 
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Note that for the Eu representation the platinum moves.  This is because the center of mass of the 

ion cannot change.  The chlorines move the mass up and right, so the platinum must move down 

and left to compensate.  A similar exercise can be performed for bond angles and plane 

deformations. 

So we now know how many bond stretching modes there are and their symmetry.  The next 

question is: Which will be IR active, which Raman active, and which will be both? Recall from 

Chapter 5 the Schrodinger integral for the infrared:  I ∝ ∫ψv′µψv″dτ, where ψv′ and ψv″ are the 

wave functions for two vibrations and µ = electric dipole moment. 

For almost all observed vibrations, it can be shown that ψv′  is the ground state vibration 

andψv″ is the first excited state.  (Most molecules are in the vibrational ground states most of the 

time.) 

The above integral is non-zero (allowed) only if the direct product of the irreducible 

representations of each of the functions includes A1g.  The ground state vibrations of any 

molecule will be described by the totally symmetric representation of its point group.  Therefore, 

the direct product of the irreducible representations of the electric dipole and the excited state 

must include the A1g. 

Useful relation:  ΓA x  ΓB includes A1 or A1g  iff   ΓA = ΓB . 

Recall from Chapter 5, µ can be polarized along the x, y, and z axes, and the irreducible 

representations of those axes are then used.  Thus, each irreducible representation determined for 

the molecule that corresponds to an irreducible representation for x, y, z will be IR active. 

For PtCl −2
4 : Eu is IR active and one of the stretching modes. 
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The Raman bands are determined in a similar manner.  The Schrodinger equation for Raman 

spectroscopy is I ∝ ∫ψv′αψv″dτ, where α is the polarizability tensor, 



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

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zzyzxz
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ααα
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.  There 

are 6 different values in this matrix (αxx, αxy, αxz, αyy, αyz, αzz) and if any of the integrals with 

one of these terms is non-zero there will be observable Raman bands.  The αxy, αxz, αyz, and αzz 

transform as the respective d-orbitals, while αxx and αyy transform as either x2 + y2 or x2 - y2. 

Thus for PtCl−2
4 : A1g  + B1g  i.e. there are two Raman bands. 

A few points worthy of note: 

1)  IR and Raman modes will be mutually exclusive if the molecule is centrosymmetric.  

(possesses the “i” element).  In other molecules, some bands may be both IR and Raman 

active. 

2) While uncommon, some modes may be neither IR nor Raman inactive. 

3) It might appear from the previous discussion that a molecule can have at most 3 IR and 6 

Raman x-y bands.  This is not true.  All equivalent atoms/groups and their respective 

motions are treated as a unit.  If non-equivalent atoms/groups exist, they are treated 

separately.  For example, in the case of PtCl4
2- bond scissoring and plane deformation 

bands are also possible.  Another example follows: 
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Cr(CO)4(PH3)2: There are 2 types of COs in this molecule, axial and 

equatorial. 

C4v E 2C4 C2 2σv 2σd 

χ(COax) 1 1 1 1 1 

χ(COeq) 4 0 0 2 0 

Without doing any math we can say that χ(COax) transforms as the A1 irreducible representation.  

For the equatorial set we find that χ(COeq) = A1, B1, and E.  Now A1 and E are IR active so there 

will be a total of 3 IR bands 2A1 + E.  Also A1, B and E are Raman active so there will be 4 

Raman CO stretching bands. 

Note it is commonly the case for E bands to be broader than A and B bands and T bands to 

be broader than E bands.  In practice, resolution decreases in the order gas phase > solution 

phase > solid phase.  Resolution is better in solution with non-interacting solvents than with ones 

that interact strongly with the compound. 

 

10.5 How to Calculate Force Constants: The F and G Matrix Method 

There is no real, practical reason to do this.  The method is fine for small molecules (i.e. 

those with a handful of atoms), but the bands are generated for gas phase molecules.  Band 

positions will change in solution or solid state and are rather complicated to calculate.   

 

10.6 Selection Rules for Fundamental Vibrational Transitions 

In Chapter 5, you were introduced to the selection rules for IR and Raman spectroscopies.  

We now go over them in somewhat greater depth.  The vibrations of molecules may be thought 

of as harmonic oscillations.  The wave function for a harmonic oscillator is given by the equation 

Cr
OC

OC CO

CO

L

CO ∆rax
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ψi(n) = Nie
-(ai/2)ξi2Hn( iα ξi) 

where Ni is a normalizing constant, αi = 2πνi/h (νi = frequency of ith normal mode), ξi is the 

normal coordinate displacement of the ith vibration, and Hn is a Hermite polynomial of order n.  

Recall that a Hermite polynomial is an orthogonal (to e-x2/2) polynomial sequence.  The first 3 

Hermite polynomials are H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 – 2. 

Under normal conditions, all vibrations in a typical molecule are in ground state.  For the 

ground state, H0( iα ξi) = 1 and ψi(0) = Nie
-(ai/2)ξi2.  If ξi represents a nondegenerate vibration, 

all symmetry operations change it into ±1 times itself (i.e. the vibration moves as normal or 

reverses itself).  A result is that ξi
2 is unchanged by the symmetry operations and the whole wave 

function ψi(0) is invariant.  Thus, the ground state wave function for normal vibrations behaves 

like the totally symmetric irreducible representation. 

Essentially all vibrational excitations in the infrared region occur for v = 0 → 1 (i.e. from 

the ground state to the first excited state).  This is simply a practical function of the available 

thermal energy at room temperature.  Such excitations are called fundamental transitions and 

lead to much more intense IR and Raman bands than other kinds of excited state transitions.  

This leads us back to Chapter 5 where we find that for a fundamental transition the integral then 

written as Ix ∝ ∫ψixψjdτ becomes Ix ∝ ∫ψ0xψ1dτ.  Since we now know ψ0 belongs to the totally 

symmetric irreducible representation, then x, y, or z, and ψ1 must belong to the same irreducible 

representation for a nonzero result from the integral to occur.  This is why we use the x, y, and z 

coordinates in the character table to determine whether or not a particular representation is IR 

active.   
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10.7 Illustrative Examples – Read on your own. 

10.8 Some Important Special Effects 

1) In molecules with centers of symmetry, IR and Raman active vibrations are mutually 

exclusive.  In other words, no irreducible representation will be valid for both IR and Raman 

transitions. 

2) When you first covered infrared spectroscopy you learned about overtones.  These are weak 

peaks found in IR (and Raman) spectra that are exact multipliers of fundamental absorptions 

(i.e. If a fundamental (strong) absorption occurs at 1203 cm-1, the overtone would be found 

at 2306 cm-1, but would have much lower intensity.)  Now, if a second absorption occurs at 

about the same value as the overtone and the excited state that gives rise to that absorption 

has the same irreducible representation as the excited state that occurs in the overtone, a 

Fermi resonance may occur.  It is a mixing of the states and there are two results.  The first 

is that the two absorptions will move away from each other and the second is that the 

overtone intensity will increase while the fundamental intensity will decrease.  This is 

shown pictorially on p. 341. 

3) All of the preceding text has assumed the molecules were in the gas phase.  In general, the 

discussion will hold for solutions as well.  The solid state is somewhat different.  Here the 

symmetry of the entire crystal governs the appearance of the absorption spectrum.  The 

symmetry of the crystal may be lower than that of the molecule, but not higher.  As a result, 

degeneracies (E & T bands) in the gas phase absorption spectra may be split.  Likewise, 

IR/Raman inactive bands in the gas phase, may become visible for solid state spectra. 


