Chapter 10

6.1 Introductory Remarks

All molecules in the liquid, gas, or solution phasesimenstant motion. That motion is
generally divided into translational, rotational, anbrational motions. The first two are largely
absent in the solid state. Vibrational motions aigeolable in the infrared region of the
electromagnetic spectrum via infrared and Raman speopiesc

Prior to taking physical chemistry, you probably thought babchtions occur randomly.
Because the center of mass in a molecule cannot cldanigg a vibration, vibrations occur
fixed patterns and the number of possible collectionshwétion is limited for each molecule.
One other thing should be mentioned. The term vibrasiased loosely here. It includes the
back-and-forth movements, in- and out-of-plane moven{engs ring puckering), and bond

angle changes (scissoring).

6.2 The Symmetry of Normal Vibrations

Molecules of more than two atoms display an appareothyoluted pattern of internal
motion (vibration) to the observer. The apparent ramtiess of the motions gets worse as the

molecules contain larger numbers of atoms. This eagebn for three simple molecules;SO

H,0, and CQ athttp://[chemed.chem.wisc.edu/JCEWWW/Articles/WWWO0001/indewl ht

which shows both individual vibrations and multiple vimas superimposed. Another website,

http://www?2.ess.ucla.edu/~schauble/molecular_vibrations.$tieows uncoupled normal mode

vibrations for a number of molecules.
As you know there are 3n-6 modes of vibration (differemti& of vibration) within a

molecule, unless it is linear and then there are 3n-5 snodlkis is because with 3 vectors (x, v,


http://jchemed.chem.wisc.edu/JCEWWW/Articles/WWW0001/index.html
http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm

z), there are 3n ways each atom can move. Six nardesubtracted for translation and rotation
along the x, y, and z axes.

On p. 306 the books shows the normal modes of vibratiouiigrstate) for C¢¥". You are
not expected to be able to predict these. It also proaitkey explaining how to interpret the
symbolism. Read over the rest of the sectionxgtagns how to assign irreducible
representations to normal modes and works through threducible representation for you.

You should verify that thé&," andA,” modes are, in fact, correctly assigned on your own.

10.3 Determining the Types of Normal Modes

We noted earlier that there are 3n-6 normal vibratiarades for a typical molecule, in
addition to 3 translational and 3 rotational modes. fdroeess of determine them begins with
choosing a molecule, determining its point group, and placset of 3 vectors. The vectors
should point along sets of aligned coordinate axesHiggre 10.3 for an example).

Your book works through the carbonate ion. I'll do BtClIFirst draw a picture and go

through the steps just described. The point grolpis

Now apply theC, axis (clockwise looking down from +2z) to the molecwidat happens?
On the platinum, z remains the same, bug,yoecomes x and %;becomes 4. On the
chlorines, z becomes z y; becomes x and % becomes —y Similar changes occur for the

other 3 atoms.



The technically proper way to solve this problem is to constar 15 x 15 matrix and enter
values that describe the movement of these vectorgsithe book demonstrates, any vector
whose base moves, yields an off-diagonal elemeneimditrix. Since only the character
(diagonal) matters, solving problems is greatly simplifigdgnoring any vector that moves to
another location. We only need worry about vectorsdhber remain in place or rotate about
their base. From the last paragraph, we thus ignereettors on the chloride ions, but must
consider all three on the platinum ion.

For the platinum vectors, we see that the x and yoveetre coupled to each other, but that
the z vector remains independent. Now apply the standatrakrfrom p. 72 to generate the

value of the character. This yields the matrix:

cos¥ -sind 0| |co®0° -sin90° O [0 1 O
sind cosy O0|=|sin90° coNL0°® O|=1 0 O
0 0 1 0 0 1{ |0 0 1
Thus, the character for the matrix arising from applyiags 1. For theC, axis, the matrix

yields a character of -1.

cod480° -sin180° 0 -1 0 O
sin180° cod480° 0O|=|0 -1 O
0 0 1 O 0 1

This process can be simplified further. As you can sesctor that remains in place
generates a character of +1, one that rotates 90%actdraof 0, while a 180° shift generates a -1.
Thus, if you remember this, the matrices are needed onghffts involving other angles.

With this in mind, we can generate the reducible represent®r this entire molecule.

We’ll assume tha€, coincides with th&, axis, theC,’ andg,, lie along bonds, an@,” anday

lie between them.



Dijy| E 2G4 G 2C)  2C) I 25 o0, 20, 204

M| 15 1 1 -3 -1 -3 -1 5 3 1
Now go through the standard process to determine the makethip cfducible representation.
Man=Agg* Agg * Big+ Bog + Eg + 2A5, + By, + 3E,
But some of the irreducible representations will bégassl to translations and rotations. From

the character table you can see that the x, y, ar@hglations transform as,fAand g, while
the rotations transform as,fand . Removing these from the irreducible representations fo
all motion leaves:

Mane=Argt Bigt Bog+ Eg+ Ay, + By, + 2,

Thus, we have determined the irreducible representatiaall feibrations

10.4 Contributions of Particular Internal Coordinatebltomal Modes

It would be nice to be able to subdivide the vibrationstinéar various subdivisions (e.g.
stretches, bends, and plane deformations). Not surgdyisthgs can be done. We’ll begin with
stretches and that requires us to draw a different pidtareis used for generic motion.

i ca 1%
Ar4|
Cl—— ptﬂ Cl| whereA, represents a Pt-Cl bond stretch
3 Arz
Cl

Since we’re looking at specific motions (i.e. theout motion of a particular bond) there are
only two possible values for the characters 1 antf @ vibration does not move it has a

character of one, if it moves it is zero. So fiboathe stretches we determine:



Dj|E 2, C, 2C) 2C) i 25 o, 20, 204

Cptc | 4 0 0 2 0 0 0 4 2 0
[prciyields Ay + Big + E,. The results in 2 questions: What do the moadek like, and which

are IR active and which Raman active? To ansveefitét question we need to use a projection

operator.
PMs = Ary + (Ar, + Ary) + Arg + (Ary + Arg) + (Ary + Ary) + Arg + (Ary + Ary) + Arg + (Arg +Arg) +
(Bp +Ary)
= 4Arq + 4Ary+ 4Arg + 4Ary,
= Ary + Ar, + Arg + Ar, (which is what you'd predict for something tasgimmetric)
P%9 = Ary — 2Qr, + Ary) + Arg + (Ary + Arg) — (Ar, +Ary) + Arg — (Ary + Arg) + Arg + (Ary + Arg) —
(Arp + Ary)
= 4Arq — 4Ar, + 4Ar; — 4dAr,
=Ary =Ary + Arg—Ary
P% = 2Ar; — 20r; — 20rg + 201
= 4Arq — 4Arg
=Ar; —Arg
There exists an equivalent projectiofr, —Ar,, which should seem reasonable by now. These
may be added or subtracted:
(Ary —Arz) + (Arp —Arg) = Arq + Arp— Arg —Ary
or

(Ary —Arz) — (Arp —Ary) = Arqy —Ary —Arg + Ary



Note that for the Erepresentation the platinum moves. This is bex#us center of mass of the
ion cannot change. The chlorines move the massdpight, so the platinum must move down
and left to compensate. A similar exercise capdyéormed for bond angles and plane
deformations.

So we now know how many bond stretching modes ther@nd their symmetry. The next
guestion is: Which will be IR active, which Ramantige, and which will be both? Recall from

Chapter 5 the Schrodinger integral for the infrared | YW, dt, wherey, andy, are the

wave functions for two vibrations apd= electric dipole moment.

For almost all observed vibrations, it can be shaven, is the ground state vibration
andy, is the first excited state. (Most molecules arthe vibrational ground states most of the

time.)

The above integral is non-zero (allowed) only & threct product of the irreducible
representations of each of the functions includgs Ahe ground state vibrations of any
molecule will be described by the totally symmetapresentation of its point group. Therefore,
the direct product of the irreducible representetiof the electric dipole and the excited state

must include the £,
Useful relation:T 4 X sincludes A or Ay iff Ta=T5.
Recall from Chapter %4 can be polarized along the x, y, and z axes, lamdteducible

representations of those axes are then used. &acis,irreducible representation determined for

the molecule that corresponds to an irreducibleasgmtation for x, y, z will be IR active.

For PtCE™: E, is IR active and one of the stretching modes.



The Raman bands are determined in a similar manfiee. Schrodinger equation for Raman

a a a

XX Xy Xz
spectroscopy is 0 | W, a,dt, wherea is the polarizability tensof,a,, a, a,, |. There
axz ayz azz
are 6 different values in this matriet{, Oyy, Oy, Oyy, 0y,, 0,;) and if any of the integrals with

one of these terms is non-zero there will be olz@#evRaman bands. Thg,, a,,, a,,, anda,,

yz’

transform as the respectideorbitals, whilea, anda,, transform as eithex- y* or ' - y*.

Thus for PtC} : Aig + Byg i.e. there are two Raman bands.
A few points worthy of note:

1) IR and Raman modes will be mutually exclusivéné tnolecule is centrosymmetric.
(possesses the “i” element). In other moleculesiesbands may be both IR and Raman
active.

2) While uncommon, some modes may be neither IR nardRanactive.

3) It might appear from the previous discussion thaiéecule can have at most 3 IR and 6
Raman x-y bands. This is not true. All equivaletems/groups and their respective

motions are treated as a unit. If non-equivalémtna/groups exist, they are treated
separately. For example, in the case of ft®bnd scissoring and plane deformation

bands are also possible. Another example follows:



OCy,; 21 T\ CO . .
Cr(CO}(PHy),: (Cr\ There are 2 types of COs in this molecule, aaiwal
oC |\ co
CO ™ar,,  equatorial.

Chw | E 2¢, C 20, 204

XCoy | 1 1 1 1 1

XCO9 | 4 0 © 2 0

Without doing any math we can say tR@CO,,) transforms as the Arreducible representation.
For the equatorial set we find thelCO,) = A¢, By, and E. Now Aand E are IR active so there

will be a total of 3 IR bands 2A+ E. Also A, B and E are Raman active so there will be 4
Raman CO stretching bands.

Note it is commonly the case for E bands to bedwothan A and B bands and T bands to
be broader than E bands. In practice, resolutemmehses in the order gas phaselution
phase> solid phase. Resolution is better in solutiorhvmibn-interacting solvents than with ones

that interact strongly with the compound.

10.5 How to Calculate Force Constants: FrendG Matrix Method

There is no real, practical reason to do this. fie¢hod is fine for small molecules (i.e.
those with a handful of atoms), but the bands eregated for gas phase molecules. Band

positions will change in solution or solid statel ame rather complicated to calculate.

10.6 Selection Rules for Fundamental VibrationanBitions

In Chapter 5, you were introduced to the seleatudes for IR and Raman spectroscopies.
We now go over them in somewhat greater depth. vilitations of molecules may be thought
of as harmonic oscillations. The wave functionddrarmonic oscillator is given by the equation

8



() =N @R2H (o )
whereN, is a normalizing constart, = 2nv;/h (v; = frequency oftf normal mode)g; is the
normal coordinate displacement of tHevibration, ancH,, is a Hermite polynomial of order n.
Recall that a Hermite polynomial is an orthogortrale(xz’z) polynomial sequence. The first 3
Hermite polynomials arkly(x) = 1,H;(X) = 2x, Hy(X) = 4 — 2.
Under normal conditions, all vibrations in a typic@lecule are in ground state. For the

ground statet(,/a; &) = 1 andy(0) = N,e@/2%Z, If ; represents a nondegenerate vibration,

all symmetry operations change it ith times itself (i.e. the vibration moves as noromal

reverses itself). A result is th§? is unchanged by the symmetry operations and tldewbave
function ¢(0) is invariant. Thus, the ground state wave fimncfor normal vibrations behaves

like the totally symmetric irreducible represerdati

Essentially all vibrational excitations in the xfed region occur forv=0 1 (i.e. from
the ground state to the first excited state). Th&mply a practical function of the available
thermal energy at room temperature. Such excitat@we called fundamentafnsitions and
lead to much more intense IR and Raman bands than kinds of excited state transitions.
This leads us back to Chapter 5 where we findftrea fundamental transition the integral then

written asl, O xydt becomed, U [goxyndt. Since we now knowy, belongs to the totally
symmetric irreducible representation, then X, yz,aand¢; must belong to the same irreducible

representation for a nonzero result from the irgketgr occur. This is why we use the x, y, and z
coordinates in the character table to determinelvener not a particular representation is IR

active.



10.7 llustrative Examples Read on your own.

10.8 Some Important Special Effects

1) In molecules with centers of symmetry, IR andn@a active vibrations are mutually
exclusive. In other words, no irreducible repreéagon will be valid for both IR and Raman
transitions.

2) When you first covered infrared spectroscopy gauned about overtones. These are weak

peaks found in IR (and Raman) spectra that are emaltipliers of fundamental absorptions
(i.e. If a fundamental (strong) absorption occurs2d3 cmt, the overtone would be found

at 2306 crit, but would have much lower intensity.) Now, e&cond absorption occurs at
about the same value as the overtone and the @stéte that gives rise to that absorption
has the same irreducible representation as theeexstiate that occurs in the overtone, a
Fermi resonance may occur. Itis a mixing of tiaes and there are two results. The first
is that the two absorptions will move away fromteather and the second is that the
overtone intensity will increase while the fundama¢mtensity will decrease. This is
shown pictorially on p. 341.

3) All of the preceding text has assumed the mddscwere in the gas phase. In general, the
discussion will hold for solutions as well. Thdidstate is somewhat different. Here the
symmetry of the entire crystal governs the appearaithe absorption spectrum. The
symmetry of the crystal may be lower than thathefitnolecule, but not higher. As a result,
degeneracies (E & T bands) in the gas phase almmoggectra may be split. Likewise,

IR/Raman inactive bands in the gas phase, may beegaible for solid state spectra.
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