
Chapter 2 
 
2.1 The Defining Properties of a Group 

A group is a collection of elements that are interrelated according to a set of rules.  In 

mathematics there are 4 rules that all elements must obey to form a group. 

1) The product of any 2 elements in a group and the square of each element must also be a 

member of the group.  Note that here, the word “product” does not necessarily mean 

‘multiply’ in the traditional sense of the word (e.g. 2*3 = 6).  You can think of the word 

product as meaning “act on” or “operate on.”  Where we must agree on what those 

phrases mean.  Thus, addition, subtraction, multiplication, and division could all, in 

principle, be “products.”  Most groups you will encounter will obey the commutative 

law of multiplication, however it is not a requirement that they do so.  Groups whose 

members obey the commutative law are Abelian (i.e. AB = BA). 

2) One element must commute with all others and leave them unchanged.  This is the 

identity element and is typically represented by “E.”  Thus, EA = AE = A. 

3) The associate law of multiplication must hold.  (i.e. (AB)C = A(BC) or A(BD)(DE) = 

(AB)(CD)E) 

4) Every element must have a reciprocal that is also a member of the group.  

E is always its own reciprocal.  Other elements may or may not be their own reciprocals.  In 

general, if A and B are reciprocals, then AB = BA = E and A-1 = B and B-1 = A.  Note that only 

two possibilities for reciprocals exist: (1) an element may be its own reciprocal (e.g. E) or (2) 

two elements may be reciprocals of each other. 

Theorem:  The reciprocal of a product equals the product of the reciprocals in reverse order.  (i.e. 

(ABC…)-1 = …C-1B-1A-1 
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Proof: Let AB = C 

 ABB-1A-1 = CB-1A-1 

 AEA-1 = CB-1A-1 

 AA-1 = CB-1A-1 

 E = CB-1A-1 

 Thus C must be the reciprocal of B-1A-1, but from the first line of the theorem we know 

that C = AB, so C-1 = (AB)-1.  Now C-1AB = E so C-1 = (AB)-1 = B-1A-1 and the theorem is 

proved. 

 

2.2 Some Examples of Groups 

As the book points out a common group would be the integers (…, -2, -1, 0, 1, 2, …) with 

the function ‘addition’ chosen as the product, subtraction works just as well, but multiplication 

and division do not.  Do you see why?  Consider the 4 rules listed in the previous section: 

1) The sum of any two integers yields a third integer.  For example, 2 + 3 = 5 and -3 + 2 = 

-1.  Since adding is commutative the group is Abelian. 

2) The identity element is 0.  (e.g. 2 + 0 = 2) 

3) The associative law holds:  1 + 2 + 3 = (1 + 2) + 3 = 1 + (2 + 3) = 6 

4) Every element has a reciprocal that is a member of the group.  Each number’s reciprocal 

is its negative (e.g. 1 & -1). 

Group Multiplication Tables 

The number of elements in a group is called its order, h.  In the previous example h = ∞.  A 

convenient way to display the products of all elements in a finite group is to create a group 

multiplication table (GMT).  A GMT will have h rows and h columns.  Since products may not 
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be commutative, the order is defined as (column element) x (row element).   

Theorem: Each row and column in a GMT lists each element once and only once.  No two rows 

or two columns may be identical.  The result is that each row/column is a unique 

scrambling of the elements. 

Proof: Consider a group with h elements, E, A1, A2, …, Ah.  In the nth row, the products are (in 

order) EAn, A1An, …, AnAn, …, AhAn.  Since no two elements are the same, no two 

products can be the same.  E.g.  if A1An = A2An that implies that A1 = A2, which is a 

contradiction of our initial assumption. 

Groups of Orders 1, 2, and 3 

h = 1 This group is trivial.  It has only one element, which must be E. 

h = 2 One element is E, let the other be A.  Then, 

 G2 E A 

 E E A 

 A A E Thus, A is its own reciprocal. 
 

h = 3 The elements for this group are E, A, and B.  We begin by constructing the first row and 

column, both of which are predetermined. 

 G3 E A B  

 E E A B  

 A A   

 B B   
 
 We now have two ways to fill out the rest of the table. 

 G3 E A B  G3´ E A B 

 E E A B or E E A B 

 A A B E  A A E B 

 B B E A  B B A E 
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 The first table, G3, is acceptable (note that each row contains one and only element and 

that they follow the rules outlined earlier).  The second however is not because columns 2 and 3 

each have a repeated element.  If one tries to solve this problem, two rows have repeating 

elements (try this). 

Cyclic Groups 

The previous group, G3, is an example of a cyclic group.  A cyclic group is one in which all 

members result from the products of only one member.  In this case, A = A, A x A = A2 = B, and 

A x A x A = A3 = E. 

All cyclic groups are Abelian.  Do you see why this is reasonable?  There will always be a 

cyclic group for each order, although most orders have additional groups possible.  Additional 

types of groups become possible at h = 4.  We begin with the cyclic group: 

G4 E A B C 

E E A B C 

A A B C E 

B B C E A 

C C E A B 

Since this is a cyclic group each element can be written as a power instead of using different 

symbols for each element.  This makes the cyclic nature of the group obvious. 

G4 E A B C   

E E θ θ2 θ3 

A θ θ2 θ3 E 

B θ2 θ3 E θ 

C θ3 E θ θ2 

How do we form a second group (i.e. one that is different from the cyclic group)?  In the 

Note that there is always an E A B C 
progression where on each successive row or 
column the first element is moved to the rear of 
the queue. 
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previous example B is its own inverse (B x B = E), while A and C are inverses of each other.  

One thing to try is to make each element its own inverse. 

G4 E A B C   

E E A B C 

A A E C B 

B B C E A 

C C B A E 

These are the only two possible groups for this order.  Why?  Elements that are not their own 

inverses must come in at least pairs.  Since E is always its own inverse, this leaves 3 other 

elements.  The two groups just developed cover 2 of 3 possibilities.  The third possibility has  

A-1 = B, B-1 = C, and C-1 = A (or some analogous variation).  This combination can’t work.  You 

should take a few minutes to try just to demonstrate it to yourself. 

Groups of Order 5 and 6 

The book informs you that there is a single group of order 5.  From what we’ve seen so far, 

you know this must be the cyclic (Abelian) group.  There are multiple groups of order 6, 

including the cyclic group.  As an exercise, without having the book open, try to construct one of 

the other groups.  What are the relationships between its members (i.e. what are the inverses)? 

 

2.3 Subgroups 

One of the two groups you might have constructed at the end of the last section appears at 

the top of the next page.  If you look at it carefully, you’ll see that it contains several smaller 

groups (called subgroups) within it.  
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G6 E A B C D F 

E E A B C D F 

A A E D F B C 

B B F E D C A 

C C D F E A B 

D D C A B F E 

F F B C A E D 

Besides (E, A) can you find any other subgroups in this table (there are several, including an h 

= 3 subgroup).  The list appears below.  One small, but significant point is that all groups contain 

the trivial, one member subgroup E.  Also, all of the subgroups must contain the element E.  Do 

you see why?  Here are the possible subgroups:  (E, A), (E, B), (E, C), (E, D), and (E, D, F). 

For the h = 6 group, we can see that all of the subgroups have order 1, 2, 3, and 6 (note the 

whole group is, of course, a subset of itself).  These represent the multiplicative factors that make 

up the number six.  This leads us to LeGrange’s theorem which says that the order of any 

subgroup must be a whole number divisor of the group order.   

i.e. Assume a group order, h, then the subgroup order, g, is given by g = 
k

h
, where g, h, and 

k are whole numbers. 

The book’s proof may be a little confusing and the following discussion may help a bit.  

Assume a group with A1, A2, A3, …, An as its members.  The subgroup containing all members 

has g = n, so 
k

h
 = 

n

n
 = 1 = k.  Now assume another group with A1, A2, A3, …, An and B as its 

members, where A1, A2, A3, …, An represent a subgroup.  In this case, A1, A2, A3, …, An and B 

can’t all be members of the same subgroup.  Why not?  Recall that one of the subgroup members 

must be E.  Thus, BE = EB = B and this would violate our initial assumption.  There are two 

possible explanations: (1) the initial assumption is not valid or (2) the products are not members 

One of the h = 2 subgroups 
within this group. 
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of the subgroup.   

We’ll begin by considering the second option.  If this is really a group, then BA1, BA2, …, 

BAn must also be members of the group, so the total number of group members must be 2n (A1, 

A2, …, An and BA1, BA2, …, BAn).  So h/g = 2n/n = 2 = k.  What happens if the group consists of 

the elements A1, A2, …, An, B, and C?  Now A1, …, An, BA1, …, BAn, and CA1, …, CAn must be 

members of the group and if they are mutually exclusive, then k = 3.  This progression will 

continue until the product of A1, …, An with other elements yields the total group order, h.  As 

you can see from the progression, k must always be a whole number. 

 

2.4 Classes 

In addition to subgroups, elements may be subdivided into classes.  This is accomplished by 

applying similarity transforms to the elements.  Assume A, B, and X are elements in a group 

where X-1AX = B.  B is called the similarity transform of A by X.  A and B are said to be 

conjugate. 

Properties of Conjugate Elements 

1) Every element is conjugate with itself.  That is, there is some element in any group that will 

convert A into itself.  E will always do this, as well as any element that commutes with A  

(X-1AX = X-1XA = A). 

2) If A is conjugate with B, the B is conjugate with A.  Thus, if X-1AX = B then Y-1BY = A where 

X =  Y-1. 

3) If A is conjugate with B and C, then B and C are conjugate with each other. 

A complete set of elements conjugate to each other is a class.  The orders of all classes must be 

whole number factors of the group. 


