
Chapter 3 

3.1 General Remarks 

What do we mean by the word “symmetry?”  You have a qualitative feel for the term, but 

there is a more technical, quantitative measure as well.  We’ll begin with the question: which of 

the following drawings is most symmetrical? 

 

It probably took you only a few seconds to select the first one.  With this in mind, what is a good, 

non-mathematically based definition that would work here?  I’ll propose that symmetry is the 

presence of repeating patterns within an object or group of objects: the more repetition, the more 

symmetrical the object. 

 

3.2 Symmetry Elements and Operations 

A symmetry operation is the movement of an object such that the object before the 

operation is indistinguishable from it after the operation.  For example, if a square is rotated 90º, 

180º, or 270º about its center (in the plane it occupies) you couldn’t tell the rotation occurred. 

A symmetry element is the geometric entity about which the symmetry operation occurs.  In 

the previous example, the symmetry element was a line perpendicular to the plane of the paper, 

passing through the center of the square. 

Not surprisingly, symmetry elements and operations always occur together.  For single 

objects, the element always passes through the center of the item.  There are only 5 such 

element/operation pairings required to describe the symmetry of any object.  The first is E, the 

identity element.  The element is a point in the center of the molecule about which nothing is 

done.     



 2 

3.3 Symmetry Planes and Reflections 

A reflection through a symmetry plane transports everything on each side of the plane to the 

other side along its perpendicular to the plane.  The distance from the plane is the same before 

and after the reflection.  Objects in the plane do not move.  A reflection is represented by the 

Greek letter σ.  All planar molecules contain a symmetry plane.   

Generalities 

If a molecule contains a symmetry plane, there must be an even number of each type of 

atom/group not in the plane.  Repeating a reflection regenerates the original molecule.  This is 

the equivalent to E, the identity operation, in which molecule remains unchanged.  If there is 

only one of any atom, then all planes for that molecule must pass through that atom. 

How many planes do the following molecules possess?  HC≡CH, H2O, NH3, CH4, SF6  Are 

the planes in any way related to one another?  If so, how? 

  

3.4 Inversion Center 

If each molecule in an atom were given Cartesian coordinates then inversion, i, would cause 

the following operation (x, y, z) → (-x, -y, -z). 

Generalities: 

Repeating an inversion regenerates the original molecule.  (i.e. i2 = E)  Except for an atom at 

the center (an optional event), all atoms must come in pairs. 

 

3.5 Proper Axes and Rotations 

A proper (rotation) axis is a line passing through an object such that a rotation of the object 

about the line yields a form indistinguishable from the initial object.  The book uses the 
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equilateral triangle as an example.  It is as good as any, and I’ll use it as well.  In the figure 

below, the blue triangle represents a C3 rotation axis perpendicularly passing through the plane 

of the paper. 
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Rotation axes are designated by Cn, where n is the order of the axis.  The book defines n as 

“the largest value of n such that rotation through 
n

2π
 gives an equivalent configuration.”  The 

definition that I find more convenient to use is the minimum n to regenerate the original image.  

In the above example, 3 x 120º gives back the original image, so the axis is C3. 

The operations are represented as follows:  120º = C3, 240º = 2
3C , 360º = 3

3C  = E.  Thus, 

there are n operations associated with each Cn axis.  

Species on a proper axis remain unchanged by a rotation. There must be n of each thing not 

on an axis for a Cn axis to exist.  For example, in ammonia a C3 axis passes through the lone pair 

and nitrogen atom.  There are 3 identical hydrogen atoms equidistant from the axis and spatially 

equivalent. 

By convention, operations of higher order are reduced when possible.  The book works C6 

for you.  I’ll start with C4.  The operations possible for C4 are C4, 
2
4C , 3

4C , and 4
4C = E.  But 2

4C  

= C2. 
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Thus, C4, 
2
4C , 3

4C , and 4
4C  becomes C4, C2, 

3
4C , E. 

Examples of other rotation axes include C2 (H2O, CH2Cl2), C3 (NH3, mer-CrCl3•3H2O), C4 

(PtCl4
2-), C5 (C5H5

-), C6 (C6H6), and C∞ (CO2).  Locate the listed axis for each of these species. 

As the discussion above shows, molecules may have more than one type of axis.  In the C4 

example, a C2 and C4 were coincident, but this need not be the case.  For example, in benzene, 

there are coincident C6, C3, and C2 axes, but also 6 C2 axes perpendicular to the first group.  Try 

to find them. 

An interesting aside is that a molecule may not possess only two C2 axes, but more or fewer 

are possible.  (see p. 30 of the book or p. 7 of the notes) 

On page 26 the book describes, at great length, the interrelationship of planes and proper 

axes.  Generally, these things may be found by inspection and after some practice become 

intuitive.  Personally, I find these rules cumbersome.  Use them if you wish, and ask about them 

in class. 

 

3.6 Improper Axes and Improper Rotations 

 An improper rotation axis is one about which an object is rotated then reflected through a 

plane perpendicular to the rotation axis (or vice-versa, the order does not matter).  It is 

designated Sn, where n carries a similar meaning to n in Cn.  Note that Sn may exist where Cn 
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and/or σ do not. 

 Let’s use the example in the book. 
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This is an S6 axis.

 

The S3 in this example is coincident with a C3.  This occurs frequently.  A good place to look for 

an Sn axis is overlapping a Cn axis.  As you’ll see shortly, all even Sn axes have coincident Cn/2 

axes. 

An improper axis generates operations Sn, 
2
nS , 3

nS , …, n
nS .  These can frequently be 

reduced to other operations.  For example, every other operation the σ planes cancel each other.  

There are two scenarios for Sn.  n = even or odd.  Unique (ie. non-convertible) Sn axes appear in 

blue. 

n even 

Let n = 6 then S6, 
2
6S , 3

6S , 4
6S , 5

6S , and 6
6S  

S6= turn 60º and reflect = unique  

2
6S  = turn 120º and reflect twice = turn 120º = C3 

3
6S =  turn 180º and reflect 3 times = i = S2 

4
6S  = turn 240º and reflect 4 times = 23C  

5
6S  =  turn 300º and reflect 5 times = unique 

6
6S  = turn 360º and reflect 6 times = E 

Thus for Sn  (n = even), there will always be a Cn/2 axis.  (Recall the previous example.) 
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n = odd  

Let n = 5 then S5, 
2
5S , 3

5S , 4
5S , and 5

5S  

S5 = rotate 72º and reflect once = unique 

2
5S  = rotate 144º and reflect 2 times = 25C  

3
5S  = rotate 216º and reflect 3 times = unique 

4
5S  = rotate 288º and reflect 4 times = 45C   

5
5S  = rotate 360º and reflect 5 times = σ 

This means that if Sn (n = odd) exists Cn and σ must also exist independently.  Note that 7
5S  and 

9
5S  are also important and unique. 

 

3.7 Products of Symmetry Operations 

We just finished discussing the physical operations and elements necessary for describing 

the symmetry of everything:  E, σ, i, Cn, Sn.  The last element provides a nice lead-in to this 

section. 

Sn results from the consecutive application of two symmetry operations: Cn then σ (or the 

reverse).  This can be expressed as σCn = Sn where Cn is carried out first.  In general, YX = Z 

means carry out X, then Y, which is the same as Z.  In general, the order of the operations 

matters.  The consecutive application of operations is called a product, and if the order of 

application doesn’t matter, they are said to commute. 

As you saw some products of Cn and σ led to other symmetry elements such as i.  

Your book works several examples using coordinates.  An important consequence of these 
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examples is the demonstration that, typically, the product of two operations is a third, different 

operations.  I’ll work a couple of the examples pictorially (blue denotes a positive coordinate, red 

is negative).   

 

C2(x)C2(y) = C2(z) 

 

 

This proves that if two C2 exist in an object, a third C2 must also exist (cf. bottom of p. 24 of the 

book, p. 4 of the notes). 

 

C4(z)σ(xz) = σd  

 

 

On p. 31 the book suggests trying C4(z)C2(y) = C2(xy) = C2′.  Try it with pictures if you have 

trouble. 

 

3.8 Equivalent Symmetry Elements and Equivalent Atoms 

Equivalent symmetry elements or atoms are those that may be carried into each other by 

(other) symmetry elements in the molecule.  The book’s language may be a little hard to follow, 

and examples may be a better way to explain this.  Consider O2.  Chemically the oxygen atoms 

are identical.  Rotating the molecule 180º about a perpendicular axis passing through the bond 

midpoint causes the atoms to exchange positions.  The atoms are thus equivalent by symmetry.  

In the same way, if the operations/elements in a molecule are displayed, any that can be moved 
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to overlay another using other symmetry operations are equivalent.  A couple of examples are 

shown below. 

Consider PtCl4
2-:   

 The C4 will interconvert all 4 chlorine ions, so all 
are equivalent.  

 

 
C4 also interconverts C2′ and C2′′ so these 

operations are equivalent, as are C2′′′ and C2′′′′, but 
the first two operations are not equivalent to the 
second two. 

 

 

3.9 General Relations among Symmetry Elements/Operations 

Read on your own.  These probably aren’t worth committing to memory. 

 

3.10 Symmetry Elements and Optical Isomerism 

At this point your book gives a definition worth noting.  You are used to thinking of chiral 

molecules as asymmetric.  This is not always the case however (a spiral for example).  Thus the 

definitions:  

dissymmetric – molecules not superimposable on their mirror images. 

asymmetric – having no symmetry (only the operation E is present) 

A molecule having no improper axis, inversion center, or symmetry plane is dissymmetric 

(chiral).  The book goes into great detail about this, but all you really need to remember is this rule.  

 

3.11 Symmetry Point Groups 

This section begins by demonstrating that the symmetry elements/operations found within 
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molecules actually do form a group and then goes on to describe the different types of point 

groups, building up from those with only the identity to those with increasingly large numbers of 

elements.  It will be important for you to know the various point groups, but you can see the 

same information laid out more succinctly in Appendix IIA (in the book and the insert in the 

back cover). 

One useful assignment that both the book and I recommend is to take a group (say D3h 

(ethane eclipsed) or D3d (ethane staggered)) and show how elements interchange.   

 

3.12 Symmetry with Higher Order Multiple Axes 

All of the groups discussed in the previous section share in common that there is, at most, 

one unique Cn axis where n > 2.  It turns out there are only 5 shapes, the Platonic solids, that 

allow multiple higher-order Cn axes.  These are the only polyhedra that can be formed from sides 

made of only 1 regular polygon (e.g. equilateral triangle).  The book provides a simple proof of 

this.  From these shapes, one can derive 3 high order, high symmetry groups, and 4 somewhat 

lower order/symmetry groups.  These all have multiple, non-coincident axes that are C3 and 

higher.   

There are 3 point groups based on the tetrahedron Td, Tn, and T (decreasing symmetry).  

Two are based on the octahedron (Oh , O) and one on the icosahedron (Ih, I).  The book does a 

nice job of taking you through how they are made. 

 

3.13 Classes of Symmetry Operations 

In order for 2 elements to be members of the same class they must be the same type of 

element, e.g. Cn or σ or Sn, etc.  To be in the same class those elements must be equivalent (i.e. 
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interchangeable by a 3rd operation).  The book works an example on page 52.  Some general 

points include (i) only Cn , Sn, σv can be in classes with multiple elements, (ii) axes will tend to 

pair in classes, and (iii) there may be more than two σ planes in a class (e.g. in C3v).  The 

importance of this occurs in character tables (the tables appearing in Appendix IIA) where 

operations in the same class are grouped together.  That is, instead of listing them separately, 

they are preceded by a coefficient (e.g. in the point group C3v instead of C3 and 2
3C one finds 

2C3). 

 

 3.14 A Systematic Procedure for Symmetry Classification of Molecules 

There is a narrative here, but make sure you go over and learn the flow chart on p. 56. 

 

3.15 Illustrative Examples:   

Make sure you go over these.  

   


