Chapter 3

3.1 General Remarks

What do we mean by the word "symmetry?" You have a qualitative feel for the term, but there is a more technical, quantitative measure as well. We'll begin with the question: which of the following drawings is most symmetrical?

It probably took you only a few seconds to select the first one. With this in mind, what is a good, non-mathematically based definition that would work here? I'll propose that symmetry is the presence of repeating patterns within an object or group of objects: the more repetition, the more symmetrical the object.

3.2 Symmetry Elements and Operations

A symmetry operation is the movement of an object such that the object before the operation is indistinguishable from it after the operation. For example, if a square is rotated 90°, 180°, or 270° about its center (in the plane it occupies) you couldn't tell the rotation occurred.

A symmetry element is the geometric entity about which the symmetry operation occurs. In the previous example, the symmetry element was a line perpendicular to the plane of the paper, passing through the center of the square.

Not surprisingly, symmetry elements and operations always occur together. For single objects, the element always passes through the center of the item. There are only 5 such element/operation pairings required to describe the symmetry of any object. The first is E, the identity element. The element is a point in the center of the molecule about which nothing is done.

3.3 Symmetry Planes and Reflections

A reflection through a symmetry plane transports everything on each side of the plane to the other side along its perpendicular to the plane. The distance from the plane is the same before and after the reflection. Objects in the plane do not move. A reflection is represented by the Greek letter σ. All planar molecules contain a symmetry plane.

Generalities

If a molecule contains a symmetry plane, there must be an even number of each type of atom/group not in the plane. Repeating a reflection regenerates the original molecule. This is the equivalent to E, the identity operation, in which molecule remains unchanged. If there is only one of any atom, then all planes for that molecule must pass through that atom.

How many planes do the following molecules possess? $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{SF}_{6}$ Are the planes in any way related to one another? If so, how?

3.4 Inversion Center

If each molecule in an atom were given Cartesian coordinates then inversion, i, would cause the following operation $(x, y, z) \rightarrow(-x,-y,-z)$.

Generalities:

Repeating an inversion regenerates the original molecule. (i.e. $i^{2}=E$) Except for an atom at the center (an optional event), all atoms must come in pairs.

3.5 Proper Axes and Rotations

A proper (rotation) axis is a line passing through an object such that a rotation of the object about the line yields a form indistinguishable from the initial object. The book uses the
equilateral triangle as an example. It is as good as any, and I'll use it as well. In the figure below, the blue triangle represents a C_{3} rotation axis perpendicularly passing through the plane of the paper.

Rotation axes are designated by C_{n}, where n is the order of the axis. The book defines n as "the largest value of n such that rotation through $\frac{2 \pi}{n}$ gives an equivalent configuration." The definition that I find more convenient to use is the minimum n to regenerate the original image. In the above example, $3 \times 120^{\circ}$ gives back the original image, so the axis is C_{3}.

The operations are represented as follows: $120^{\circ}=C_{3}, 240^{\circ}=C_{3}^{2}, 360^{\circ}=C_{3}^{3}=E$. Thus, there are n operations associated with each C_{n} axis.

Species on a proper axis remain unchanged by a rotation. There must be n of each thing not on an axis for a C_{n} axis to exist. For example, in ammonia a C_{3} axis passes through the lone pair and nitrogen atom. There are 3 identical hydrogen atoms equidistant from the axis and spatially equivalent.

By convention, operations of higher order are reduced when possible. The book works C_{6} for you. I'll start with C_{4}. The operations possible for C_{4} are $C_{4}, C_{4}^{2}, C_{4}^{3}$, and $C_{4}^{4}=E$. But C_{4}^{2} $=C_{2}$.

Thus, $C_{4}, C_{4}^{2}, C_{4}^{3}$, and C_{4}^{4} becomes $C_{4}, C_{2}, C_{4}^{3}, E$.
Examples of other rotation axes include $C_{2}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), C_{3}\left(\mathrm{NH}_{3}\right.$, mer $\left.-\mathrm{CrCl}_{3} \bullet 3 \mathrm{H}_{2} \mathrm{O}\right), C_{4}$ $\left(\mathrm{PtCl}_{4}^{2-}\right), C_{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}^{-}\right), C_{6}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, and $C_{\infty}\left(\mathrm{CO}_{2}\right)$. Locate the listed axis for each of these species. As the discussion above shows, molecules may have more than one type of axis. In the C_{4} example, a C_{2} and C_{4} were coincident, but this need not be the case. For example, in benzene, there are coincident C_{6}, C_{3}, and C_{2} axes, but also $6 C_{2}$ axes perpendicular to the first group. Try to find them.

An interesting aside is that a molecule may not possess only two C_{2} axes, but more or fewer are possible. (see p. 30 of the book or p. 7 of the notes)

On page 26 the book describes, at great length, the interrelationship of planes and proper axes. Generally, these things may be found by inspection and after some practice become intuitive. Personally, I find these rules cumbersome. Use them if you wish, and ask about them in class.

3.6 Improper Axes and Improper Rotations

An improper rotation axis is one about which an object is rotated then reflected through a plane perpendicular to the rotation axis (or vice-versa, the order does not matter). It is designated S_{n}, where n carries a similar meaning to n in C_{n}. Note that S_{n} may exist where C_{n}
and/or σ do not.
Let's use the example in the book.

The S_{3} in this example is coincident with a C_{3}. This occurs frequently. A good place to look for an S_{n} axis is overlapping a C_{n} axis. As you'll see shortly, all even S_{n} axes have coincident $C_{\mathrm{n} / 2}$ axes.

An improper axis generates operations $S_{\mathrm{n}}, S_{\mathrm{n}}^{2}, S_{\mathrm{n}}^{3}, \ldots, S_{\mathrm{n}}^{\mathrm{n}}$. These can frequently be reduced to other operations. For example, every other operation the σ planes cancel each other. There are two scenarios for S_{n}. $n=$ even or odd. Unique (ie. non-convertible) S_{n} axes appear in blue.
n even

$$
\begin{aligned}
& \text { Let n }=6 \text { then } \mathrm{S}_{6}, S_{6}^{2}, S_{6}^{3}, S_{6}^{4}, S_{6}^{5} \text {, and } S_{6}^{6} \\
& S_{6}=\operatorname{turn} 60^{\circ} \text { and reflect }=\text { unique } \\
& S_{6}^{2}=\operatorname{turn} 120^{\circ} \text { and reflect twice }=\operatorname{turn} 120^{\circ}=\mathrm{C}_{3} \\
& S_{6}^{3}=\operatorname{turn} 180^{\circ} \text { and reflect } 3 \text { times }=i=S_{2} \\
& S_{6}^{4}=\operatorname{turn} 240^{\circ} \text { and reflect } 4 \text { times }=C_{3}^{2} \\
& S_{6}^{5}=\operatorname{turn} 300^{\circ} \text { and reflect } 5 \text { times }=\text { unique } \\
& S_{6}^{6}=\operatorname{turn} 360^{\circ} \text { and reflect } 6 \text { times }=\mathrm{E}
\end{aligned}
$$

Thus for $S_{\mathrm{n}}\left(\mathrm{n}=\right.$ even), there will always be a $C_{\mathrm{n} / 2}$ axis. (Recall the previous example.)
$\underline{n}=$ odd
Let $\mathrm{n}=5$ then $\mathrm{S}_{5}, S_{5}^{2}, S_{5}^{3}, S_{5}^{4}$, and S_{5}^{5}
$\mathrm{S}_{5}=$ rotate 72° and reflect once $=$ unique
$S_{5}^{2}=$ rotate 144° and reflect 2 times $=C_{5}^{2}$
$S_{5}^{3}=$ rotate 216° and reflect 3 times $=$ unique
$S_{5}^{4}=$ rotate 288° and reflect 4 times $=C_{5}^{4}$
$S_{5}^{5}=$ rotate 360° and reflect 5 times $=\sigma$

This means that if $S_{\mathrm{n}}(\mathrm{n}=$ odd $)$ exists C_{n} and σ must also exist independently. Note that S_{5}^{7} and S_{5}^{9} are also important and unique.

3.7 Products of Symmetry Operations

We just finished discussing the physical operations and elements necessary for describing the symmetry of everything: E, $\sigma, \mathrm{i}, C_{\mathrm{n}}, S_{\mathrm{n}}$. The last element provides a nice lead-in to this section.
S_{n} results from the consecutive application of two symmetry operations: C_{n} then σ (or the reverse). This can be expressed as $\sigma C_{\mathrm{n}}=S_{\mathrm{n}}$ where C_{n} is carried out first. In general, $\mathrm{YX}=\mathrm{Z}$ means carry out X , then Y , which is the same as Z . In general, the order of the operations matters. The consecutive application of operations is called a product, and if the order of application doesn't matter, they are said to commute.

As you saw some products of C_{n} and σ led to other symmetry elements such as i.

Your book works several examples using coordinates. An important consequence of these
examples is the demonstration that, typically, the product of two operations is a third, different operations. I'll work a couple of the examples pictorially (blue denotes a positive coordinate, red is negative).

This proves that if two C_{2} exist in an object, a third C_{2} must also exist (cf. bottom of p. 24 of the book, p. 4 of the notes).

On p. 31 the book suggests trying $C_{4}(\mathrm{z}) C_{2}(\mathrm{y})=C_{2}(\mathrm{xy})=C_{2}{ }^{\prime}$. Try it with pictures if you have trouble.

3.8 Equivalent Symmetry Elements and Equivalent Atoms

Equivalent symmetry elements or atoms are those that may be carried into each other by (other) symmetry elements in the molecule. The book's language may be a little hard to follow, and examples may be a better way to explain this. Consider O_{2}. Chemically the oxygen atoms are identical. Rotating the molecule 180° about a perpendicular axis passing through the bond midpoint causes the atoms to exchange positions. The atoms are thus equivalent by symmetry. In the same way, if the operations/elements in a molecule are displayed, any that can be moved
to overlay another using other symmetry operations are equivalent. A couple of examples are shown below.

Consider $\mathrm{PtCl}_{4}{ }^{2-}$:

The C_{4} will interconvert all 4 chlorine ions, so all are equivalent.

C_{4} also interconverts $C_{2}{ }^{\prime}$ and $C_{2}{ }^{\prime \prime}$ so these operations are equivalent, as are $C_{2}{ }^{\prime \prime \prime}$ and $C_{2}{ }^{\prime \prime \prime \prime}$, but the first two operations are not equivalent to the second two.

3.9 General Relations among Symmetry Elements/Operations

Read on your own. These probably aren't worth committing to memory.

3.10 Symmetry Elements and Optical Isomerism

At this point your book gives a definition worth noting. You are used to thinking of chiral molecules as asymmetric. This is not always the case however (a spiral for example). Thus the definitions:
dissymmetric - molecules not superimposable on their mirror images.
asymmetric - having no symmetry (only the operation E is present)

A molecule having no improper axis, inversion center, or symmetry plane is dissymmetric (chiral). The book goes into great detail about this, but all you really need to remember is this rule.

3.11 Symmetry Point Groups

This section begins by demonstrating that the symmetry elements/operations found within
molecules actually do form a group and then goes on to describe the different types of point groups, building up from those with only the identity to those with increasingly large numbers of elements. It will be important for you to know the various point groups, but you can see the same information laid out more succinctly in Appendix IIA (in the book and the insert in the back cover).

One useful assignment that both the book and I recommend is to take a group (say $D_{3 \mathrm{~h}}$ (ethane eclipsed) or $D_{3 \mathrm{~d}}$ (ethane staggered)) and show how elements interchange.

3.12 Symmetry with Higher Order Multiple Axes

All of the groups discussed in the previous section share in common that there is, at most, one unique C_{n} axis where $\mathrm{n}>2$. It turns out there are only 5 shapes, the Platonic solids, that allow multiple higher-order C_{n} axes. These are the only polyhedra that can be formed from sides made of only 1 regular polygon (e.g. equilateral triangle). The book provides a simple proof of this. From these shapes, one can derive 3 high order, high symmetry groups, and 4 somewhat lower order/symmetry groups. These all have multiple, non-coincident axes that are C_{3} and higher.

There are 3 point groups based on the tetrahedron $T_{\mathrm{d}}, T_{\mathrm{n}}$, and T (decreasing symmetry). Two are based on the octahedron $\left(O_{\mathrm{h}}, O\right)$ and one on the icosahedron $\left(I_{\mathrm{h}}, I\right)$. The book does a nice job of taking you through how they are made.

3.13 Classes of Symmetry Operations

In order for 2 elements to be members of the same class they must be the same type of element, e.g. C_{n} or σ or S_{n}, etc. To be in the same class those elements must be equivalent (i.e.
interchangeable by a $3^{\text {rd }}$ operation). The book works an example on page 52. Some general points include (i) only $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}, \sigma_{\mathrm{v}}$ can be in classes with multiple elements, (ii) axes will tend to pair in classes, and (iii) there may be more than two σ planes in a class (e.g. in $C_{3 \mathrm{v}}$). The importance of this occurs in character tables (the tables appearing in Appendix IIA) where operations in the same class are grouped together. That is, instead of listing them separately, they are preceded by a coefficient (e.g. in the point group $C_{3 \mathrm{v}}$ instead of C_{3} and C_{3}^{2} one finds $2 C_{3}$).
3.14 A Systematic Procedure for Symmetry Classification of Molecules

There is a narrative here, but make sure you go over and learn the flow chart on p. 56.

3.15 Illustrative Examples:

Make sure you go over these.

