Chapter 3

3.1 General Remarks

What do we mean by the word “symmetry?” You have a quak feel for the term, but
there is a more technical, quantitative measure as Wédlll begin with the question: which of

the following drawings is most symmetrical?
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It probably took you only a few seconds to select tig éine. With this in mind, what is a good,

non-mathematically based definition that would worleRet’ll propose that symmetry is the
presence of repeating patterns within an object or groapjetts: the more repetition, the more

symmetrical the object.

3.2 Symmetry Elements and Operations

A symmetry operatioms the movement of an object such that the objecrbdhe

operation is indistinguishable from it after the operati For example, if a square is rotated 90°,
180°, or 270° about its center (in the plane it occugms)ouldn’t tell the rotation occurred.

A symmetry elemenis the geometric entity about which the symmetry opmratccurs. In

the previous example, the symmetry element was a liepéicular to the plane of the paper,
passing through the center of the square.

Not surprisingly, symmetry elements and operations alwagsr together. For single
objects, the element always passes through the centexr ®&¢m. There are only 5 such
element/operation pairings required to describe the symmeémy object. The first i, the
identity element. The element is a point in the gentéhe molecule about which nothing is

done.



3.3 Symmetry Planes and Reflections

A reflection through a symmetry plane transports ewémg on each side of the plane to the
other side along its perpendicular to the plane. Thardis from the plane is the same before
and after the reflection. Objects in the plane doommte. A reflection is represented by the
Greek lettero. All planar molecules contain a symmetry plane.

Generalities

If a molecule contains a symmetry plane, there maistrbeven number of each type of
atom/group not in the plane. Repeating a reflection regessethe original molecule. This is
the equivalent td&, the identity operation, in which molecule remainshamged. If there is
only one of any atom, then all planes for that mokecalist pass through that atom.

How many planes do the following molecules possess2aCH,O, NH;, CH,, SK; Are

the planes in any way related to one another? If@e?h

3.4 Inversion Center

If each molecule in an atom were given Cartesiamdinates then inversion, would cause
the following operation (x, y, z» (-X, -y, -2).
Generalities:

Repeating an inversion regenerates the original mole¢idei? = E) Except for an atom at

the center (an optional event), all atoms must cionpairs.

3.5 Proper Axes and Rotations

A proper (rotation) axis is a line passing through an objegtt that a rotation of the object

about the line yields a form indistinguishable from thgal object. The book uses the



equilateral triangle as an example. It is as goodhypsaand I'll use it as well. In the figure

below, the blue triangle represent€-grotation axis perpendicularly passing through the plane

of the paper.
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Rotation axes are designated@y where n is the order of the axis. The book defmas

“the largest value afi such that rotation throug%ﬂ gives an equivalent configuration.” The
n

definition that | find more convenient to use is thinimumn to regenerate the original image.

In the above example, 3 x 120° gives back thermmalgmage, so the axis ;.
The operations are represented as follows: 120§ 240° =C}, 360° =C; =E. Thus,

there aren operations associated with edghaxis.

Species on a proper axis remain unchanged by sommtdhere must be of each thing not
on an axis for &£, axis to exist. For example, in ammoni@-paxis passes through the lone pair
and nitrogen atom. There are 3 identical hydragems equidistant from the axis and spatially
equivalent.

By convention, operations of higher order are reduehen possible. The book woikg

for you. I'll start withC,. The operations possible f6y areC,, CZ, C;, andC;=E. But C;?

= CZ-



Thus,C,, CZ, CJ, andC; become<,, C,, C;, E.

Examples of other rotation axes includg(H,O, CH,Cl,), C5 (NH3, mer-CrCke3H,0), C4

(PtCl,%), Cs (CsHs"), Cg (CgHg), andC,, (CO,). Locate the listed axis for each of these spsecie
As the discussion above shows, molecules may have than one type of axis. In tGg
example, &, andC, were coincident, but this need not be the case.ekample, in benzene,
there are coincideriy, C;, andC, axes, but also 6, axes perpendicular to the first group. Try
to find them.
An interesting aside is that a molecule may nosess only twdC, axes, but more or fewer

are possible. (see p. 30 of the book or p. 7@hibtes)

On page 26 the book describes, at great lengthintdeelationship of planes and proper
axes. Generally, these things may be found byectsgn and after some practice become
intuitive. Personally, | find these rules cumbenso Use them if you wish, and ask about them

in class.

3.6 Improper Axes and Improper Rotations

An improper rotatioraxis is one about which an object is rotated tieflected through a
plane perpendicular to the rotation axis (or vieesa, the order does not matter). Itis

designateds,, wheren carries a similar meaning toin C,. Note that§, may exist wher€,



and/orodo not.

Let’s use the example in the book.
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The S; in this example is coincident withG. This occurs frequently. A good place to look fo
ans§, axis is overlapping &, axis. As you'll see shortly, all evesj axes have coincide,,
axes.

An improper axis generates operatighsS?, S’, ..., S!'. These can frequently be

reduced to other operations. For example, evdmwraiperation the planes cancel each other.
There are two scenarios f§. n = even or odd. Unique (ie. non-convertitfiiz)axes appear in
blue.

neven
Letn=6then§ S, S}, S, S, andSg
S= turn 60° and reflect = unique
S; =turn 120° and reflect twice = turn 120° 5 C
SS= turn 180° and reflect 3 times =S
S, =turn 240° and reflect 4 timesG?
S, = turn 300° and reflect 5 times = unique

S = turn 360° and reflect 6 times = E

Thus forS, (n = even), there will always beGy,, axis. (Recall the previous example.)



n = odd

Letn=5then§ &, S¢, S¢, andS]

S = rotate 72° and reflect once = unique

SZ = rotate 144° and reflect 2 timesG?

S’ = rotate 216° and reflect 3 times = unique

S! = rotate 288° and reflect 4 timesG?

S. = rotate 360° and reflect 5 times=

This means that &, (n = odd) exists Fando must also exist independentlilote thatS! and

S’ are also important and unique

3.7 Products of Symmetry Operations

We just finished discussing the physical operatmms elements necessary for describing
the symmetry of everything: B, i, C,, S,. The last element provides a nice lead-in to this
section.

S, results from the consecutive application of twmeyetry operationsC, theno (or the
reverse). This can be expressed@s = S, whereC, is carried out first. In general, YX =Z

means carry out X, then Y, which is the same asnZgeneral, the order of the operations
matters. The consecutive application of operations isechd productand if the order of
application doesn’'t matter, they are said to conemut

As you saw some products@f ando led to other symmetry elements such.as

Your book works several examples using coordinafesimportant consequence of these



examples is the demonstration that, typically,greduct of two operations is a third, different
operations. I'llwork a couple of the examplestgi@lly (blue denotes a positive coordinate, red

IS negative).

(X1, Y1, 1)
Z -
) =) N o oy
B ‘(le Y1, 1) (X1, Y1, 21)_ \

| Cy(2) T

This proves that if tw@, exist in an object, a thir@, must also existcf. bottom of p. 24 of the

book, p. 4 of the notes).

oY1 2)
Cu(2)o(x2) =04 5, .- »x : o(x2)

s

| Cy(2)

On p. 31 the book suggests tryiBg(z)C,(y) = Cy(xy) =C,'. Try it with pictures if you have

trouble.

3.8 Egquivalent Symmetry Elements and Equivalenin#sto

Equivalent symmetry elements or atoms are thosarthg be carried into each other by
(other) symmetry elements in the molecule. Theklsolanguage may be a little hard to follow,
and examples may be a better way to explain tmnsider Q. Chemically the oxygen atoms
are identical. Rotating the molecule 180° abgutrpendicular axis passing through the bond
midpoint causes the atoms to exchange positiohg. aloms are thus equivalent by symmetry.

In the same way, if the operations/elements in kecade are displayed, any that can be moved



to overlay another using other symmetry operatamasequivalent. A couple of examples are

shown below.

Consider PtGFf: Ol
4 - . .
. o The C, will interconvert all 4 chlorine ions, so all
4 2 .
are equivalent.
Clg
Cy”

. C, also interconvert€,’ andC," so these
operations are equivalent, as &g’ andC,"", but

the first two operations are neguivalent to the
second two.

3.9 General Relations among Symmetry Elements/@ipasa

Read on your own. These probably aren’t worth c@tmg to memory.

3.10 Symmetry Elements and Optical Isomerism

At this point your book gives a definition worthtmg. You are used to thinking of chiral
molecules as asymmetric. This is not always tise t@wever (a spiral for example). Thus the
definitions:
dissymmetric- molecules not superimposable on their mirromgiesa
asymmetric- having no symmetry (only the operatiéms present)

A molecule having no improper axis, inversion cente symmetry plane is dissymmetric

(chiral). The book goes into great detail aboig, thut all you really need to remember is thigrul

3.11 Symmetry Point Groups

This section begins by demonstrating that the sytmnedements/operations found within



molecules actually do form a group and then goe® alescribe the different types of point
groups, building up from those with only the idénto those with increasingly large numbers of
elements. It will be important for you to know th&rious point groups, but you can see the
same information laid out more succinctly in ApperdtiA (in the book and the insert in the
back cover).

One useful assignment that both the book and Innemend is to take a group (sByy,

(ethane eclipsed) d»;, (ethane staggered)) and show how elements integeha

3.12 Symmetry with Higher Order Multiple Axes

All of the groups discussed in the previous secsioare in common that there is, at most,

one uniqueC,, axis where n > 2. It turns out there are only&pes, the Platonic solids, that
allow multiple higher-orde€, axes. These are the only polyhedra that canrieefib from sides

made of only 1 regular polygon (e.g. equilatenaingle). The book provides a simple proof of
this. From these shapes, one can derive 3 higér,ondyh symmetry groups, and 4 somewhat
lower order/symmetry groups. These all have mieltipon-coincident axes that are &d
higher.

There are 3 point groups based on the tetraheldjdiy,, andT (decreasing symmetry).
Two are based on the octahedr@y ( O) and one on the icosahedrdp (). The book does a

nice job of taking you through how they are made.

3.13 Classes of Symmetry Operations

In order for 2 elements to be members of the sdass they must be the same type of

element, e.gC,oroor S, etc. To be in the same class those elementsbhawsguivalent (i.e.
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interchangeable by d&*3peration). The book works an example on pageS&fine general

points include (i) only ¢, S, g, can be in classes with multiple elements, (ii)sawl tend to
pair in classes, and (iii) there may be more tlend planes in a class (e.g.@,). The

importance of this occurs in character tables f@bées appearing in Appendix IIA) where
operations in the same class are grouped togethet is, instead of listing them separately,

they are preceded by a coefficient (e.g. in thetpgrioupCs, instead ofC; and CZ one finds

2C,).

3.14 A Systematic Procedure for Symmetry Clasdifoen of Molecules

There is a narrative here, but make sure you goan learn the flow chart on p. 56.

3.15 lllustrative Examples

Make sure you go over these.
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