
Chapter 5 

5.1 Wave Functions as Bases for Irreducible Representations 

Remember that H = E where H = Hamiltonian operator,  = wave function, E = 

eigenvalue (the system energy).  Thus, H means that an operation (H) acts on a function () to 

yield a constant (E) times the same function.  When a wave function obeys this equation it is 

called an eigenfunction.  In the text below, the terms will be used interchangeably. 

An important property of the Hamiltonian is that it must not change if an applicable 

symmetry operation is performed on the molecule.  This is reasonable since the molecule after 

the operation is indistinguishable from it before and so its energy should not change either. 

If this is true, then operations must commute with the Hamiltonian:  

HR = RH = ER = RE 

All this says is that, since the energy doesn’t change, it doesn’t matter if one performs the 

symmetry operation before or after applying the Hamiltonian to the wave function.   

Now each electron is associated with a particular wave function and it’s possible for them to 

lie in degenerate orbitals.  This means it’s possible for different wave functions to yield the same 

eigenvalues.  e.g. 

Hi1 = Eii1     and     Hi2 = Eii2 

In this case it’s important to remember that i1 and i2 are not identical because the orbitals 

exist in different regions of space (e.g. px & py), but yield orbitals of equal energy.  Furthermore, 

a linear combination of the eigenfunctions will yield the same eigenvalue.  (i.e.  H 
j

ijaij = 

Ei 
j

ijaij  where aij is the relative weighting of each eigenfunction) 

Eigenfunctions are also orthonormal.  These are functions that are both orthogonal (ijd 
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= 0 where i  j) and normalized (total probability equals 1).   

Recall from earlier that symmetry operations must commute with the Hamiltonian.  Using 

the book’s notation “R” for a generic symmetry operation, we find for a non-degenerate 

eigenfunction 

HRi = EiRi  

Since the eigenfunction must be normalized, then R must equal 1.  This will be true of each 

operation in a point group so that one will generate a representation  for the group with values 

of 1 for each element (class).  Since the element E is +1, this must be an irreducible 

representation. 

The situation for degenerate eigenfunctions is more complex.  The book works through the 

general math, then a specific example on pp. 102 – 105.  I’ll provide an alternative narrative to 

go with the math.  From equations 5.1-9 – 5.1-13, the object is to show that for degenerate 

orbitals, you start by plugging in a linear combination of eigenfunctions and then, because the 

“multiplication” of any two operators within a point group gives rise to a third operator within 

the same point group, you can generate another irreducible representation that incorporates the 

degeneracy.  This is, perhaps, not obvious from the abstract math on pp. 102 & 103 and so the 

example on the next 2 pages serves to illustrate that this is true.  

The example, the p orbitals in ammonia, involves intrinsically linked orbitals.  The 

eigenfunctions for the orbitals (rsincos and rsinsin) differ somewhat from what you have 

seen in the past because, I think, they take into account the 3 dimensional shape of the orbital.  

The book refers you to Figure 8.1 (p. 205) which is worth looking at if you’ve never worked with 

polar coordinates.  The 4 lines following “and hence” are a mathematical relationship you may 

have forgotten:  cos( + ) = coscos – sinsin & sin(+ ) = sincos + cossin 
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This, then, lays the groundwork for operating each of the symmetry elements on the 

eigenfunction to illustrate the creation of a 2-dimensional irreducible representation. 

 

5.2 The Direct Product 

From the perspective of point groups, a direct product of two eigenfunctions, each 

transforming as an irreducible representation, results in multiplying each pair of characters for a 

given class to give either a reducible or irreducible representation.  (This is the first theorem and 

is proved in the book.)  For example, consider the totally symmetric irreducible representation 

for any group, multiplying it by any other irreducible representation of that point group, returns 

the second irreducible representation.    For example, for C3v A1A2 = A2. 

C3v E 2C3 3v

A2

A1

E

11 1

1 1 -1

-1 02

A1A2 1 1 -1
 

However, as we’ll see later, the product may be reducible, depending on which irreducible 

representations are multiplied.  If so, the resulting reducible representation is a linear 

combination of irreducible representations (p. 106) and can be deconstructed (see pp. 87 – 88).  

Direct products are important because they describe the interaction of eigenfunctions.  Finally, 

higher order direct products are possible.  These involve multiplying more than 2 irreducible 

representations, but otherwise they work exactly the same as just described.   

Consider 2 functions fA and fB.  For the integral fAfBd, the result will be zero unless the 

integrand fAfB is invariant to all symmetry operations in the point group in question.  (Remember 

that the integrand is the function to be integrated and that invariant means that the integrand does 
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not change sign or magnetude.)  In general, the integrand will be invariant only if AB (reducible 

representation of the direct product A•B) includes the total symmetric irreducible representation.  

If it does, the totally symmetric irreducible representation will appear only once. 

Illustrative Example – Point Group D4 

In brief, this section shows that, for at least one point group D4, the product of at least one 

pair of irreducible representations produces a reducible representation that includes the A1 

representation.  Also, for the integration of higher order integrals the same is true.  One of the 

irreducible representations must be A1 for the integral to be non-zero.  You can show yourself 

this is generally true by working an example on another point group. 

 

5.3 Identifying Non-Zero Matrix Elements 

The interaction energy between any 2 states is given by the equation:   

Hi = Ej    




τd

τd

ji

ji



 H
 = E 

Since the Hamiltonian must contain all of the symmetry elements of the molecule, the 

symmetry of the integrands depends on i and j.  If their product includes the totally symmetric 

representation the integral will have a non-zero value.  This will happen if their irreducible 

representations are the same. 

Another application of the material from Section 5.2 concerns the selection rules for spectral 

transitions.  The frequency of light associated with a spectral transition is given by h = Ei – Ej.  

The intensity of this transition is given by: 

I  ijd 
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where  is the transition moment operator.  When  is the electric dipole operator, then 

 = 
i

ii xe  + 
i

ii ye  + 
i

iize   

where ei is the charge on a particle and x, y, and z are its Cartesian coordinates. This operator 

couples the electric vector of a molecule with electromagnetic radiation to allow its transfer to or 

from the molecule. 

Because the coordinate axes are orthogonal, equation 5.3-3 expands to: 

 Ix  ixjd

 Iy  iyjd

 Iz  izjd 

The symmetry of the molecule directly affects how the light interacts with it.  First, the electric 

dipole will have one irreducible representation associated with it in each direction.  Thus, the 

direct product of the irreducible representations of i, j, and the electric dipole must contain the 

totally symmetric irreducible representation for an absorption or emission to occur.  In most 

cases, molecules are very low symmetry and only light polarized in a single direction will be 

absorbed.  It is certainly possible for none of the transitions to be symmetry allowed.  It is also 

possible for 2 or 3 of the transitions to combine, but this requires the molecules to have E and T 

irreducible representations.   

Illustrative Example: Mo2X8
4- 

This molecule belongs to the D4h point group.  If the  and * molecular orbitals are 

subjected to each of the operations in D4h the table at the bottom of p. 112 is generated (make 

sure you can do this).  Thus,  has B1g symmetry, while * has B2u symmetry.  So, for the 

transition  *, what is (x,y,z)*d?   
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From the character tables, we see that z = A2u and x = y = Eu.  Now 

* = B1g x A2u x B2u or B1g x Eu x B2u 

D4h E 2C4 C2 2C2 2C2 i 2S4 h 2v 2d 

B1g x A2u x B2u 1 1  1 1 1 1 1 1 1 1 = A1g 

B1g x Eu x B2u 2 0 -2 0 0 2 0 -2 0 0 = Eg 

Thus, from our previous discussion, absorption or emission is allowed only with z-polarization.  

This is what is meant by the statement that a transition is “symmetry allowed” or “symmetry 

forbidden.”  Those that are forbidden must decay by non-radiative pathways and generally have 

long lifetimes. 


