
Chapter 6 

6.1 Introductory Remarks 

In your Physical and Inorganic Chemistry classes you learned about linear combinations of 

atomic orbitals (LCAOs).  In introductory settings, these are frequently constructed in the 

context of a ring or chain of the same atoms.  For example, butadiene may be represented as 

follows: 
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ψ = φ1 + φ2 + φ3 + φ4

ψ = φ1 + φ2 − φ3 − φ4

ψ = φ1 − φ2 − φ3 + φ4

ψ = φ1 − φ2 + φ3 − φ4  

We did this by inspection using the knowledge that as the number of nodes increases, so does the 

energy of the molecule.  Still the construction was done in a cursory fashion.  Your instructor 

probably glossed over why the first node went between carbons 2 & 3 above, instead of 1 & 2, 

for example.  The use of symmetry operations explains how they are generated, with the 

functions called symmetry adapted linear combinations. 

 

6.2 Derivation of Projection Operators 

A projection operator is a function that maps a vector space onto a subspace.  You may find 

the Wikipedia website (http://en.wikipedia.org/wiki/Projection_(linear_algebra)) on this topic 

helpful, but a summary appears here.  A simple example of a projection involves suspending an 

object over a sheet of paper, place a light above it, and then tracing the object on the paper.  The 

drawing is a 2-dimentional projection of the 3-dimensional object.  (i.e. 2D space is a subset of 

3D space).  In this example, we take all points (x, y, z) and convert the z component to zero.  It is 
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important to note that, in this example, there are an infinite number of resulting projections 

because all we have to do is take the object and rotate it about either or both the x- and y-axes to 

change the projection.  The particular example is called an orthonormal projection because it 

projects 3 dimensions into 2 dimensions.   

The important equation for us is 6.2-4 on p. 116 and I leave it’s derivation to the book.  It 

may be written slightly differently and you may use whichever format is easier for you to 

remember. 
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where fj is just a function, a wave function in our case.  Γi is the irreducible representation under 

consideration, χ is the character of the irreducible representation for the element Rˆ  in the group.  

This function will only yield a nonzero result if the function is either described by the particular 

irreducible representation under consideration or contains it as a component of several 

irreducible representations.  As usual, it may be easier to understand the equation by using it. 

  

6.3 Using Projection Operators to Construct SALCs 

Your book works through ethylene, we’ll do water.  

O
H H

σ1 σ2

 

Simply by inspection, one can come up with the LCAO/SALC for this molecule.  Since there are 

two MOs going in, there must be two combinations coming out.  Since it’s a linear combination, 

only addition and subtraction are permitted so:  σ1 + σ2 and σ1 – σ2.  Now let’s go through the 

math to show how to get this combination the using the proper methodology. 
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We begin by determining the point group of the molecule, then generating a reducible 

representation.  In this situation, if a bond does not move, it is assigned a value of 1, if it does 

move it is a 0.  Another words, we are forming a representation with the two bonding orbitals, 

called basis functions because they from the basis of the reducible representation.  If a basis 

function translates (moves), it cannot contribute to the reducible representation.  The book 

demonstrates this on the top of p. 121 nicely.  Thus, if we assume the xz plane includes the atoms 

in water, we generate: 

 C2v E C2 σ(xz) σ(yz) 

 Γ 2 0 2 0 

We can now extract the irreducible representations from Γ by the standard method: 

A1:  ¼[(1)(1)(2) + (1)(1)(0) + (1)(1)(2) + (1)(1)(0)] = 1 

A2:  ¼[(1)(1)(2) + (1)(1)(0) + (1)(-1)(2) + (1)(-1)(0)] = 0 

B1:  ¼[(1)(1)(2) + (1)(-1)(0) + (1)(1)(2) + (1)(-1)(0)] = 1 

B2:  ¼[(1)(1)(2) + (1)(-1)(0) + (1)(-1)(2) + (1)(1)(0)] = 0 

So the reducible representation is comprised of A1 + B1.  Now generate the SALC of orbitals that 

arise from these irreducible representations.  This works as follows: 

1) We know that σ1 and σ2 are energetically the same and are symmetry equivalent. 

2) The projection operator moves the orbital (in this case σ1), through each of the symmetry 

operations in succession.  Thus, applying C2 to σ1 causes it to occupy the position that σ2 is 

in initially.  It is thus entered as σ2 in the table below. 

3) The resulting basis function is then multiplied by the character of the irreducible 

representation of the projection operator being used at the time. 
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 C2v E C2 σ(xz) σ(yz) 

 1APˆ (σ1) σ1 σ2 σ1 σ2 → 2σ1 + 2σ2 ∝ σ1 + σ2 

 1BPˆ (σ1) σ1 −σ2 σ1 −σ2 → 2σ1 – 2σ2 ∝ σ1 – σ2 

Note that these are the same two linear combinations we came up with at the beginning without 

doing any math.  Of course, this is the easiest example (i.e. exactly two equivalent bonds).  

Things with 3 or more bonds require the math.  Attempts to do this “by inspection” as in the 

example on p. 1 of the notes always assume things in this method. 

This does not yield normalized functions (note the proportionality).  The normalization 

factor is 
∑

2i

1
 where i are the coefficients on the functions in the unnormalized answer.  In 

this case, 
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.   So the SALC functions for water are: 

 ψ1 = 
2

1
(σ1 + σ2) and ψ2 = 

2

1
(σ1 – σ2) 

Now we will work through the book example MH6, on pp. 123 – 124.  The molecule is Oh 

symmetry so: 

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd 

Γ 6 0 0 2 2 0 0 0 4 2 

To save space, only the nonzero irreducible representations are solve for below. 

A1g: 48
1

((1)(1)(6) + (8)(1)(0) + (6)(1)(0) + (6)(1)(2) + (3)(1)(2) + (1)(1)(0) + (6)(1)(0) 

 + (8)(1)(0) + (3)(1)(4) + (6)(1)(2)] = 1 

Eg: 48

1
((1)(2)(6) + (8)(-1)(0) + (6)(0)(0) + (6)(0)(2) + (3)(2)(2) + (1)(2)(0) + (6)(0)(0) 
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 + (8)(-1)(0) + (3)(2)(4) + (6)(0)(2)] = 1 

 

T1u: 48

1
((1)(3)(6) + (8)(0)(0) + (6)(-1)(0) + (6)(1)(2) + (3)(-1)(2) + (1)(-3)(0) + (6)(-1)(0) 

 + (8)(0)(0) + (3)(1)(4) + (6)(1)(2)] = 1 

The book tells you about using the O point group as a short cut, but that’s really no help to you in 

the long run since you don’t know when you can do this, so we’ll go through it the long way 

from here on out.  So at this point we apply the projection operator to all 3 irreducible 

representations.  For this we’ll need a number scheme for the molecule so first that: 

M
H

H H

H

H

H

σ1σ2

σ3

σ6

σ5

σ4

 

Not surprisingly, the solution here is more complicated than for water.  For example there are 4 

C3 axes in the molecule (one each passing through M and the 1-5-4, 1-2-5, 3-4-5, and 2-3-5 

triangles), each of which can turn 120º and 240º.  We must ask what happens to σ1 after each of 

these rotations.  This is too cumbersome to put into a table as for water so we’ll do this longhand. 

1gAPˆ (σ1) = E(σ1) + (4C3(σ1) + 4C3
2(σ1)) + 6C2(σ1) + (3C4(σ1) + 3C4

2(σ1)) + 3C2(σ1) + i(σ1) + 

(3S4(σ1) + 3S4
3(σ1)) + (4S6(σ1) + 4S6

5(σ1)) + 3σh(σ1) + 6σd(σ1) 

  = σ1 + [2σ3 + 2σ4 + 2σ5 + 2σ6] + [2σ2 + σ3 + σ4 + σ5 + σ6] + [2σ1 + σ3 + σ4 + σ5 + 

σ6] + [σ1 + 2σ2] + σ2 + [2σ2 + σ3 + σ4 + σ5 + σ6] + [2σ3 + 2σ4 + 2σ5 + 2σ6] 

+ [2σ1 + σ2] + [2σ1 + σ3 + σ4 + σ5 + σ6] 

 = 8σ1 + 8σ2 + 8σ3 + 8σ4 + 8σ5 + 8σ6  

 ∝ σ1 + σ2 + σ3 + σ4 + σ5 + σ6  
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ψ = 
6

1
(σ1 + σ2 + σ3 + σ4 + σ5 + σ6) 

This is exactly what you’d expect for the total symmetric irreducible representation, A1g.  Your 

book works through the T1u state for you.  You should try the Eg on your own. 

A Cyclic π-System 

The book sets this up and goes through A2″ fine.  Let’s look at the E″ irreducible 

representation, however.  We begin by treating E″ just like A2″ and generating the SALC: 

ψ = 
6

1
(2σ1 – σ2 – σ3) 

But, since this is a two-dimensional irreducible representation, there must be a second, 

orthonormal companion function to this one that also differs only by a constant ±1 multiplier.  

The following is an alternative method to getting the same, second function. 

We begin by using σ2 and σ3 in place of σ1 when applying the E″ irreducible representation.  

In this case, the very similar wave functions  

 ψ ′= 2σ2 – σ1 – σ3 & ψ″′ = 2σ3 – σ2 – σ1 

are generated, respectively.  If we add these two functions we find that 

ψ ′ + ψ″′ = -2σ1 + σ2 + σ3 = -1(2σ1 – σ2 – σ3). 

This is the original function multiplied by -1, but it’s the same thing, not orthonormal.  To create 

the orthonormal version, subtract one function from the other 

ψ ′ - ψ″′ = (2σ2 – σ1 – σ3) - (2σ3 – σ1 – σ2) = σ2 – σ3 

This is the partner function to ψ and when normalized it takes the form:  
2

1
(σ2 – σ3).  Thus, we 

can generate the equations by a simple LCAO process, in this case subtraction.  The only thing 
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left here is to demonstrate that they are, in fact, normalized.   

(2σ1 – σ2 – σ3)(σ2 – σ3) = 2σ1σ2 – 2σ1σ3 – σ2
2 + σ2σ3 – σ3σ2 + σ3

2  

 = 2σ1σ2 – 2σ1σ3 – σ2
2 + σ3

2  

but since σ1 = σ2 = σ3,  

 = 2σ1
2 – 2σ1

2 -σ1
2 + σ1

2 

 = 0 

Thus the functions are indeed orthonormal. 


