Chapter 6

6.1 Introductory Remarks

In your Physical and Inorganic Chemistry classes youmdshabout linear combinations of

atomic orbitalfLCAQOSs). In introductory settings, these are freglyssdnstructed in the

context of a ring or chain of the same atoms. kample, butadiene may be represented as

follows:
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We did this by inspection using the knowledge that as the nuohipedes increases, so does the
energy of the molecule. Still the construction wase in a cursory fashion. Your instructor
probably glossed over why the first node went betwedrocs 2 & 3 above, instead of 1 & 2,
for example. The use of symmetry operations explamsthey are generated, with the

functions called symmetry adapted linear combinations

6.2 Derivation of Projection Operators

A projection operatois a function that maps a vector space onto a subspamemay find

the Wikipedia website (http://en.wikipedia.org/wiki/fction_(linear_algebra)) on this topic
helpful, but a summary appears here. A simple exanf@gmjection involves suspending an
object over a sheet of paper, place a light abovedttlaen tracing the object on the paper. The
drawing is a 2-dimentional projection of the 3-dimensiaigéct. (i.e. 2D space is a subset of

3D space). In this example, we take all points (x) ar convert the z component to zero. Itis



important to note that, in this example, there arenfamie number of resulting projections
because all we have to do is take the object and rot@beut either or both the x- and y-axes to
change the projection. The particular example iedaln orthonormal projection because it
projects 3 dimensions into 2 dimensions.

The important equation for us is 6.2-4 on p. 116 and | leavedtivation to the book. It
may be written slightly differently and you may uskiehever format is easier for you to

remember.
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where fis just a function, a wave function in our ca$gis the irreducible representation under

considerationy is the character of the irreducible representationherelementR in the group.
This function will only yield a nonzero result if theniction is either described by the particular
irreducible representation under consideration or cagithas a component of several

irreducible representations. As usual, it may be easenderstand the equation by using it.

6.3 Using Projection Operators to Construct SALCs

Your book works through ethylene, we’ll do water.
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Simply by inspection, one can come up with the LCAO/SAaCthis molecule. Since there are

two MOs going in, there must be two combinations coming 8irice it's a linear combination,

only addition and subtraction are permitted e9:+ 0, anda; —o,. Now let’s go through the

math to show how to get this combination the using the proapthodology.



We begin by determining the point group of the moleculey gemerating a reducible
representation. In this situation, if a bond does rmtanit is assigned a value of 1, if it does
move it is a 0. Another words, we are forming a remtag®n with the two bonding orbitals,
called_basis functionsecause they from the basis of the reducible repremamtdf a basis
function translates (moves), it cannot contributthtoreducible representation. The book
demonstrates this on the top of p. 121 nicely. Thus, ésseme the xz plane includes the atoms
in water, we generate:

C, | E C, o(x2) a(yz)

r 2 0 2 0

We can now extract the irreducible representations frdy the standard method:

A Va(1)(1)(2) + (1)(1)(O0) + (1)(1)(2) + (D(D)(O0)] = 1

Az Ya(1)(1)(2) + (1)(1)(0) + ()(-1)(2) + (1)(-1)(0)] =0

By: Ya[(1)(1)(2) + (D(-1)(0) + (1)(1)(2) + ()(-1)(0)] £

By Y4[(1)(1)(2) + ((-1)(0) + (1)(-1)(2) + (1)(1)(0)] &

So the reducible representation is comprisedof 8,. Now generate the SALC of orbitals that

arise from these irreducible representations. Thisksvas follows:

1) We know that; ando, are energetically the same and are symmetry equivalen

2) The projection operator moves the orbital (in thiecgy, through each of the symmetry
operations in succession. Thus, apply@3go o; causes it to occupy the position thatis
in initially. 1t is thus entered as, in the table below.

3) The resulting basis function is then multiplied by tharacter of the irreducible

representation of the projection operator being usduedirhe.



Coy E G 0(xz) a(yz)

P (0y) 0, o, 0, o, - 20,+20, O o;+0,

P (01) o2} -0, o2} -0, - 201-2, 0O 0,-0y
Note that these are the same two linear combinatiorcame up with at the beginning without
doing any math. Of course, this is the easiest exafinpleexactly two equivalent bonds).
Things with 3 or more bonds require the math. Attertgpt® this “by inspection” as in the
example on p. 1 of the notes always assume thingssiméthod.

This does not yield normalized functions (note the propamatity). The normalization

factor is \/% where i are the coefficients on the functionshim innormalized answer. In
i
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this case = — . So the SALC functions for water are:

Ve V2
1 1
W = e (0,+0y) and = e (01 —0y)

Now we will work through the book example Mibn pp. 123 — 124. The moleculedg

symmetry so:

O,| E 83 6, 6, 3C, i 65 8% 30, 60y

r 6 0 0 2 2 0 0 0 4 2

To save space, only the nonzero irreducible reptatens are solve for below.
Arg 4i8 (D)(@D)(6) + (8)(1)(0) + (6)(1)(0) + (6)(1)(2) +X&)(2) + (1)(1)(0) + (6)(1)(0)
+(8)(1)(0) + 3)(1)(4) + (6)(1)(2)] = 1

Ey 4i8 ((1)(2)(6) + (8)(-1)(0) + (6)(0)(0) + (6)(0)(2) BY(2)(2) + (1)(2)(0) + (6)(0)(0)



+(8)(-1)(0) + (3)(2)(4) + (6)(0)(2)] = 1

LETT: 4i8 ((1)(3)(6) + (8)(0)(0) + (6)(-1)(0) + (6)(1)(2) B)(-1)(2) + (1)(-3)(0) + (6)(-1)(0)

+(8)(0)(0) + B)(1)(4) + B)(M)(A)] =1
The book tells you about using t@epoint group as a short cut, but that’s really efpho you in
the long run since you don’t know when you cantids, tso we’'ll go through it the long way
from here on out. So at this point we apply thgemtion operator to all 3 irreducible

representations. For this we’ll need a numbermsehfr the molecule so first that:
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Not surprisingly, the solution here is more comgéxl than for water. For example there are 4

C; axes in the molecule (one each passing throughdvttee 1-5-4, 1-2-5, 3-4-5, and 2-3-5
triangles), each of which can turn 120° and 240& must ask what happensapafter each of
these rotations. This is too cumbersome to patartable as for water so we’ll do this longhand.
P (01) =E(0y) + (4C5(0y) + 4C5%(0y)) + 6Cx(07) + (3C4(0y) + 3C4%(0Y)) + 3Cx(0y) +i(oy) +
(354(0y) + 35%(0y)) + (454(01) + 45°(0y) + 304(0) + 604(0y)
=0y +[203 + 204 + 205 + 20¢] + [20, + O3 + 04 + O + Og| + [207 + O3 + 04 + 05 +
Ogl +[01 + 205] + 0y +[20, + 03 + 04 + 05 + O + [203 + 204 + 205 + 20¢]
+[20; +0y] + [201 + 03+ 04 + 05 + O
= 80, + 80, + 805 + 80, + 805 + 80y

oy, +0,+03+0,+ 05+ Og
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This is exactly what you'd expect for the total syetric irreducible representations A Your
book works through theqJ, state for you. You should try thg; Bn your own.

A Cyclic T=-System

The book sets this up and goes throughfie. Let’s look at the Eirreducible

representation, however. We begin by treatifiguit like A" and generating the SALC:

But, since this is a two-dimensional irreduciblpresentation, there must be a second,
orthonormal companion function to this one that aléfers only by a constaatl multiplier.
The following is an alternative method to gettihg same, second function.
We begin by using, andos in place ofo; when applying the ‘Eirreducible representation.
In this case, the very similar wave functions
'=20,-0,-03 & " =203-0,—-0;

are generated, respectively. If we add these tnotions we find that

W'+ " =-20,+0,+0;5=-1(2; —0,—0y).
This is the original function multiplied by -1, bitis the same thing, not orthonormal. To create
the orthonormal version, subtract one function fitbeother

Y'-y" =(20,—-0,—-03) - (203—-0,—0,) =0,—03

This is the partner function  and when normalized it takes the formlz (0, —03). Thus, we

2

can generate the equations by a simple LCAO prooefisis case subtraction. The only thing



left here is to demonstrate that they are, in factmalized.

(20, — 0, —03)(0, — O3) = 20,0, — 20,05 — G,% + 0,03 — 030, + 05°
= 20,0, — 20,03 — 0,2 + 03°

but sinceo; = 0, = 03,
= 20,2 - 20,2 -0,2 + 6,2
=0

Thus the functions are indeed orthonormal.



