
Chapter 7 

7.1 General Principles 

We begin with a brief review of MO theory as we will make use of it.  As previously 

discussed linear combinations of atomic orbitals (LCAOs) are a useful way to treat systems 

within the context of group theory.  With this system one can use every orbital in the molecule or 

just those of a particular type (e.g. just the π-system). 

The LCAO Approximation 

As we’ve seen, LCAO is just as described, the sum of the atomic orbitals in a molecule.  

Each molecular orbital that results is the sum of every atomic orbital in the molecule multiplied 

by a weighting function.  In the case of a localized bond, it is likely that atomic orbitals from 

distal atoms will contribute negligibly, but they will still have a non-zero coefficient.  Thus, 

 ψk = ∑
i

iikc φ  7.1-1 

where ψk is some molecular orbital, cik is the weighting coefficient, and φi is one of the atomic 

orbitals in the molecule.  Remember, there will be as many product molecular orbitals as 

component atomic orbitals.  Each molecular orbital, ψk, will be comprised of every atomic 

orbital in the molecule, to some extent.  The sum of the coefficients for each individual atomic 

orbital within all of the molecular orbitals will total 1.  [This means that if one of the atomic 

orbitals in a molecule is a 2px, the sum of the coefficients in front of the 2px wave function in all 

of the molecular orbitals will total 1.  This is reasonable, because it says that the whole orbital is 

used with nothing left over or more than one 2px used.]  This is the substance of equation 7.1-2. 

As you know, Hψ = Eψ  so, substituting into the equation above, we find that  

∑ −
i

iik Ec φ)(   H = 0 
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The book does a pretty good job of explaining this and I’ll leave it to you to read the rest of this 

subsection. 

The Hückel Approximation 

The problem with the LCAO is that it has too many terms to be handled easily.  Literally, 

every MO has a term for every AO, which for even medium-small molecules can generate 

enormous wave function equations.  To simplify, the Hückel approximation essentially discards 

all terms that do not arise from AOs on adjacent atoms interacting with one another.  

Mathematically, it assumes that all overlap integrals (∫φiφjdτ) equal zero, that is they are 

orthogonal.  The Hamiltonians yield non-zero values only if the atoms are adjacent to one 

another. 

When the Hückel approximation is applied to organic conjugated hydrocarbon systems, we 

find a special case.  Here α = Hii and β = Hij , where α is the energy of an electron in a p-π orbital 

before interacting with a neighboring orbital and β is energy of interaction between the p-π 

orbitals on adjacent atoms.  Continuing to simplify, if all were interested in is relative energies, 

we can set α equal to zero and calculate β relative to it.  In this case, energies are provided in 

“units” of β (as in 2β).  An electron in a bond is always more stable than one in an unbonded p 

orbital so the absolute energy is always negative. 

Bonding Character of Orbitals 

For the rest of the chapter, the book employs this idea of relative energies and determines 

the energy of MOs relative to their component AOs.  In this view, the weighted average energy 

of the AOs, its barycenter, is defined as zero.  Those MOs more stable are bonding, those less 

stable anti-bonding.  Those exactly equal are non-bonding (although in “real life” we think of 

orbitals very close to zero as being essentially non-bonding).   
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 With this assumption, then the solutions to otherwise complex problems becomes much 

more straightforward.  The book works through the naphthalene π-system and you can see that a 

determinant with 100 two-part terms reduces to 32 one-part terms.  While not trivial, it is much 

more manageable. 

 

7.2 Symmetry Factoring of Secular Equations 

A big problem with the determinant on p. 140, as you’ve probably noticed is the off 

diagonal elements, particularly those way off the diagonal.  These can be dealt with by 

employing symmetry in the form of SALCs.  We know that ∫ψiψjdτ and ∫ψiHψjdτ each equal 

zero unless ψi and ψj belong to the same irreducible representation (Section 5.3).  This is another 

way of justifying zero energy values for many of the positions in the determinant, but more 

importantly, allows the determinant to be rearranged in such a way as to allow block factoring of 

matrices (see Chapter 4 notes, p. 6).   

Returning to the naphthalene example, we find a D2h molecule.  Creating a reducible 

representation for the p orbitals in the π-system we find 

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz) 

Γ 10 0 -2 0 0 -10 0 2  

(To create this table, p-orbitals left along receive a “1,” those flipped over a “-1,” while those 

moving are assigned a value of “0.”) Extracting this we find it to be composed of 2B2g + 3B3g + 

2Au + 3B1u.  Now if the determinant is constructed so as to keep the orbitals within the same 

irreducible representation together, it block factors into 4 parts (two 2x2 & two 3x3) and all other 

positions become zero because their irreducible representations differ.  Now, the result is not a 

simple reordering of the rows in the determinant on p. 140, but rather a complete reconstruction 
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of the determinant.   

It turns out this is actually relatively simple.  Rather than examine adjacent orbitals, per se, 

since this is employing SALC’s let’s use one symmetry identical set, φ9 and φ10, the bridging 

carbon p-orbitals.  There are two linear combinations: φ9 + φ10 and φ9 + φ10, which belong to the 

irreducible representations B1u and B3g, respectively.  Thus, construction of the determinant is 

not based on the positions of the AOs in the molecule, but rather the irreducible representations 

themselves.  We’ll return to this later. 

 

7.3 Carbocyclic Systems 

The book works through benzene employing a shortcut it presented in Chapter 6.  It really 

isn’t necessary and has the disadvantage of employing imaginary numbers that you then must be 

removed.  Since, extracting irreducible representations from reducible representations is such an 

integral component of this course, it makes more sense to do it the long way, if only because of 

the extra practice it provides.  Thus, one obtains Γπ for benzene as presented on p. 143, that 

reduces to A2u, B2g, E1g, and E2u. 

Now employ the projection operators for each of these irreducible representations.  For A2u, 

one obtains 

A2u: 4φ1 + 4φ2 + 4φ3 + 4φ4 + 4φ5 + 4φ6 ∝ 
6

1
(φ1 + φ2 + φ3 + φ4 + φ5 + φ6) 

B2g: 2φ1 – 2φ2 + 2φ3 – 2φ4 + 2φ5 – 2φ6 ∝ 
6

1
(φ1 – φ2 + φ3 – φ4 + φ5 – φ6) 

E1g:  4φ1 + 2φ2 – 2φ3 – 4φ4 – 2φ5 + 2φ6 ∝ 
12

1
(2φ1 + φ2 – φ3 – 2φ4 – φ5 + φ6) 

The other function ½(φ2 + φ3 –φ5 – φ6) is generated as described on p. 6 of the Chapter 6 
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notes.  (Note:  If you set this up wrong, you get the correct answer by adding the functions 

instead of subtracting them.  The other result is the original function generated by the projection 

operators.) 

E2u:  Do this one on your own. 

At this point, one can construct the pictures shown on p. 147 and order them in terms of 

energy.  Here we find the A2u representation is lowest in energy, E1g next, E2u, finally B2g 

highest.  The ordering can be accomplished by simply counting the nodal planes.  We know that 

bonds result in a release in energy and the presence of nodes disrupts bonding.  We also know 

that all 6 p-orbitals are identical and so are the interactions between them.  Thus, we can simply 

count the nodal planes and assume that energy increases with their increasing number. 

Now, we can calculate the energies of each.  For that we must create the determinant for 

benzene, recalling that α = Hii and β = Hij where β = 0 for i ≠ j ±1. 
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If you’ve forgotten, the formula/methodology for solving a determinant may be found at: 

http://en.wikipedia.org/wiki/Determinant.  More simply, it can be done as follows.  Each p-

orbital in the ring interacts with 2 adjacent p-orbitals identically.  In this case, if the interaction is 

constructive (bonding) one stabilizes the system by 1β, if the interaction is destructive 

(antibonding) it destabilizes the system by 1β.  Thus, in the A1u MO, we find that each p-orbital 

has an energy of α + 2β, so the average of all six orbitals is the same.  The E1g case is, perhaps, 

http://en.wikipedia.org/wiki/Determinant
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more useful to illustrate the point. 

 2φ1 + φ2 – φ3 – 2φ4 – φ5 + φ6 

 E = 2(α + β + β) + (α + β – β) + (α + β – β) + 2(α + β + β) + (α + β – β) + (α + β – β) 

  = 8α + 8β 

This then reduces to α + β.  You should try this for the E2u and B2g representations. 

Delocalization Energy and The 4n+2 Rule 

Both of these sections seem reasonably self-explanatory and are left to you to read. 

 

7.4 More General Cases of LCAO-MO π Bonding 

 


