Chapter 7

7.1 General Principles

We begin with a brief review of MO theory as we wildke use of it. As previously
discussed linear combinations of atomic orbitals (LCA®s)sauseful way to treat systems
within the context of group theory. With this system oae use every orbital in the molecule or
just those of a particular type (e.g. just theystem).

The LCAO Approximation

As we've seen, LCAO is just as described, the surheatomic orbitals in a molecule.
Each molecular orbital that results is the sum of ea&wynic orbital in the molecule multiplied
by a weighting function. In the case of a localizedd it is likely that atomic orbitals from

distal atoms will contribute negligibly, but they hstill have a non-zero coefficient. Thus,

W= .cq 7.1-1

wherey, is some molecular orbitad;, is the weighting coefficient, ang is one of the atomic
orbitals in the molecule. Remember, there will benasly product molecular orbitals as
component atomic orbitals. Each molecular orbitg),will be comprised of evergtomic

orbital in the molecule, to some extent. The suth@fcoefficients for each individual atomic
orbital within all of the molecular orbitals will total [This means that if one of the atomic
orbitals in a molecule is gg, the sum of the coefficients in front of thg, 2vave function in all

of the molecular orbitals will total 1. This is reaable, because it says that the whole orbital is

used with nothing left over or more than omg @sed.] This is the substance of equation 7.1-2.

As you know, s = E¢ so, substituting into the equation above, we find that



The book does a pretty good job of explaining &md I'll leave it to you to read the rest of this
subsection.

The Huckel Approximation

The problem with the LCAO is that it has too maegns to be handled easily. Literally,
every MO has a term for every AO, which for everdmm-small molecules can generate
enormous wave function equations. To simplify, iigkel approximation essentially discards
all terms that do not arise from AOs on adjaceoinatinteracting with one another.
Mathematically, it assumes that all overlap intégdaqqdr) equal zero, that is they are
orthogonal. The Hamiltonians yield non-zero valoely if the atoms are adjacent to one
another.

When the Huckel approximation is applied to orgainjugated hydrocarbon systems, we
find a special case. Heoe=H; andf3 = H;;, wherea is the energy of an electron irpart orbital
before interacting with a neighboring orbital g energy of interaction between fet
orbitals on adjacent atoms. Continuing to simplifall were interested in is relatiwnergies,
we can setr equal to zero and calculdtaelative to it. In this case, energies are predich
“units” of B (as in B). An electron in a bond is always more stabla thiae in an unbondegul
orbital so the absolute energy is always negative.

Bonding Character of Orbitals

For the rest of the chapter, the book employsitigia of relative energies and determines
the energy of MOselative to their component AOs. In this view, the weighteerage energy
of the AOs, its barycenter, is defined as zeroosElMIOs more stable are bonding, those less
stable anti-bonding. Those exactly equal are rmmdimg (although in “real life” we think of

orbitals very close to zero as being essentiallyibonding).



With this assumption, then the solutions to otheeveomplex problems becomes much
more straightforward. The book works through thphthalengtrsystem and you can see that a

determinant with 100 two-part terms reduces tord2part terms. While not trivial, it is much

more manageable.

7.2 Symmetry Factoring of Secular Equations

A big problem with the determinant on p. 140, as'ye probably noticed is the off
diagonal elements, particularly those way off tlemdnal. These can be dealt with by

employing symmetry in the form of SALCs. We kndvatt] ¢ ¢4d and|¢si(ydr each equal
zero unlesg/ and¢ belong to the same irreducible representationt{@e6.3). This is another

way of justifying zero energy values for many o fpositions in the determinant, but more
importantly, allows the determinant to be rearrahigesuch a way as to allow block factoring of
matrices (see Chapter 4 notes, p. 6).

Returning to the naphthalene example, we filthamolecule. Creating a reducible
representation for the orbitals in thetwsystem we find

Doy | E Cyz) Ciy) Cyx) i o(xy) o(xz) o(yz)

r 10 0 -2 0 0 -10 0 2
(To create this tablg-orbitals left along receive a “1,” those flippedeo a “-1,” while those
moving are assigned a value of “OExtracting this we find it to be composed ofgB 3B;, +
2A, + 3B, Now if the determinant is constructed so asaepkthe orbitals within the same
irreducible representation together, it block fastato 4 parts (two 2x2 & two 3x3) and all other
positions become zero because their irreducibleesgmtations differ. Now, the result is not a

simple reordering of the rows in the determinanpof40, but rather a complete reconstruction



of the determinant.

It turns out this is actually relatively simple.atRer than examine adjacent orbitals, per se,
since this is employing SALC'’s let’s use one synmé&tentical setg, and g, the bridging
carbonp-orbitals. There are two linear combinatio@g:+ ¢ andg + ¢ Which belong to the
irreducible representations Band By, respectively. Thus, construction of the deteemtris

not based on the positions of the AOs in the mdégdaut rather the irreducible representations

themselves. We'll return to this later.

7.3 Carbocyclic Systems

The book works through benzene employing a shotttpuesented in Chapter 6. It really
isn’t necessary and has the disadvantage of enmgjoyiaginary numbers that you then must be
removed. Since, extracting irreducible repres@énatfrom reducible representations is such an
integral component of this course, it makes monsedo do it the long way, if only because of

the extra practice it provides. Thus, one obtBipfor benzene as presented on p. 143, that
reduces to A, B,y Eiq and B,
Now employ the projection operators for each o$éhereducible representations. Fgf,A

one obtains

1
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The other function Y + ¢ —@& — @) is generated as described on p. 6 of the Chépter



notes. (Note: If you set this up wrong, you @pet torrect answer by adding the functions
instead of subtracting them. The other resuliésdriginal function generated by the projection
operators.)

E,,: Do this one on your own.

At this point, one can construct the pictures showip. 147 and order them in terms of

energy. Here we find the,fA\representation is lowest in energy,Bext, B, finally By

highest. The ordering can be accomplished by simplinting the nodal planes. We know that
bonds result in a release in energy and the presainwodes disrupts bonding. We also know
that all 6p-orbitals are identical and so are the interactlmisveen them. Thus, we can simply
count the nodal planes and assume that energyasesevith their increasing number.

Now, we can calculate the energies of each. Faintle must create the determinant for

benzene, recalling that=H; andf = H;; wheref = O for i# j +1.

a-E f 0 0 0 )
B a-E p 0 0 0
0 B a-E p 0 0|
0 0 B a-E fB o |70
0 0 0 B a-E pB
)i 0 0 0 B a-E

If you've forgotten, the formula/methodology forlgag a determinant may be found at:

http://en.wikipedia.org/wiki/DeterminantMore simply, it can be done as follows. Epeh

orbital in the ring interacts with 2 adjacgnrorbitals identically. In this case, if the intetian is
constructive (bonding) one stabilizes the systertfdyf the interaction is destructive

(antibonding) it destabilizes the system Iy T'hus, in the 4, MO, we find that eacp-orbital

has an energy af + 2B, so the average of all six orbitals is the saffiee E 4 case is, perhaps,


http://en.wikipedia.org/wiki/Determinant

more useful to illustrate the point.
2 + » - » - 2 - % + %
E=2a+B+B)+(@+P-P)+@+P-P)+2@+B+P)+@+P-p)+ (@ +B-P)
=8 +&B
This then reduces w + 3. You should try this for the £ and B, representations.

Delocalization Energgnd_The 4n+2 Rule

Both of these sections seem reasonably self-exjoplanand are left to you to read.

7.4 More General Cases of LCAO-M©Bonding




