
Synthesis, Characterization, and Crystal Structure of the $(\eta^5-C_5Ph_5)Cr(CO)_3$ Radical

R.J. Hoobler,* M.A. Hutton,* M.M. Dillard,* M.P. Castellani, A.L. Rheingold, A.L. Rieger, P.H. Rieger, T.C. Richards, and William E. Geiger

Abstract

The reaction between $Cr(CO)_6$ and $Na(C_5Ph_5)$ in refluxing diglyme yields [Na(diglyme)_{3/2}][(C₅Ph₅)Cr(CO)₃], **1**. Metathesis of **1** with [Ph₃P=N=PPh₃]Cl in CH₂Cl₂ yields [Ph₃P=N=PPh₃][(C₅Ph₅)Cr(CO)₃], **2**. Oxidation of **1** by AgBF₄ in cold THF under an argon atmosphere produces (C₅Ph₅)Cr(CO)₃, **3**. Complexes **2** and **3** form a redox pair connected by a quasireversible one-electron process, $E_0 = -0.69 \text{ V}$ vs ferrocene in CH₂Cl₂, $E_0 = -0.50 \text{ V}$ in CH₃CN, k, = 0.12 cm/s. ESR spectra of (C₅Ph₅)Cr(CO)₃ in toluene at 90 K gave a rhombic g-tensor with components 2.1366, 2.0224, and 1.9953, consistent with the expected low-spin d^5 electronic configuration. The largest g-tensor component was significantly temperature dependent, suggesting an equilibrium between conformations with ²A' and ²A'' ground states. Crystal structures of [Ph₃P=N=PPh₃][(C₅Ph₅)Cr(CO)₃] and (C₅Ph₅)Cr(CO)₃ were obtained.

*Marshall University undergraduate student.