EPR Spectra of $[Cr(CO)_2L(\eta-C_6Me_6)]^+$ (L = PEt₃, PPh₃, P(OEt)₃, P(OPh)₃): Analysis of Line Widths and Determination of Ground State Configuration from Interpretation of ³¹P Couplings

M.P. Castellani, N.G. Connelly, R.D. Pike, A.L. Rieger, and P.H. Rieger

Abstract

The preparation and characterization of $[Cr(CO)_2L(\eta-C_6Me_6)]$ (L = PEt₃, PPh₃, P(OEt)₃ and P(OPh)₃, are reported. One-electron oxidation affords unstable Cr(I) cations, $[Cr(CO)_2L(\eta-C_6Me_6)]^+$, EPR spectra of which are reported. Detailed analysis of the anisotropic ³¹P hyperfine interaction indicates that, in frozen CH₂Cl₂/THF, the phosphine and phosphite complexes have ²A' and ²A'' ground states, respectively. The hyperfine anisotropy can be accounted for by dipolar interaction of the ³¹P nucleus with spin density on Cr and, in the case of the phosphite complexes, with ~0.01 P 3p_y spin density resulting from π-backbonding. Line width anomalies observed in EPR spectra of these and other Cr(I) and Mn(II) "piano stool" complexes can be understood in terms of molecular distortions resulting from solvation in frozen solutions.