CFI60 Objectives

Optics

The Ultimate in Optical Performance and System Flexibility

Nikon had two distinct goals in mind when creating its CFI60 optical system for advanced biological research microscopes: 1. To dramatically improve optical performance.

2. To boost overall flexibility of the microscope as a system and increase the performance when various microscope attachments and accessories are used.

To achieve this end, Nikon had to create a completely new standard for its CFI60 objectives. By using a tube lens focal length of 200mm and objectives having a parfocal distance of 60mm with a larger diameter by using a thread size of 25mm, Nikon succeeded in realizing both higher N.A. and longer working distances than ever before. This new optical design solved many related design problems and allowed the creation of 0.5X and 1.0X ultra-low magnification objectives. In these revolutionary optics, both axial and lateral chromatic aberration have been corrected independently in the objective and the tube lens. CFI60 objectives are designed to produce flat images without the aid of other components, allowing their use in applications other than microscopy.

The 200mm tube lens creates a smaller angle between light rays passing through the center and those off axis. This minimizes shifts in light rays on the image plane between the center of the field of view and its periphery, dramatically reducing blurring during DIC and epi-fluorescence microscopy.

Nikon also designed the epi-fluorescence system as well as the objectives to curtail auto-fluorescence and flair, contributing to greater contrast during epi-fluorescence observations.

With an array of innovative features, Nikon's CFI60 optical system delivers top-notch performance, enabling their use in increasingly sophisticated biological research.

Brightfield and Macro Observation

The most popular observation technique used is brightfield which trans-illuminates a specimen stained with an appropriate coloring reagent, such as H&E (hematoxalin and eosin).

Epi-fluorescence Observation

With the new fluorescence dyes and reagents available, epi-fluorescence has become one of the most useful clinical as well as research techniques in microscopy. In this technique, excitation light is applied to the specimen stained with specific fluorescent reagents, causing the tagged areas or components of the specimen to emit light.

5

8

Nomarski DIC Observation

Used to image the smallest structures in living and unstained specimens, this technique defines the details in 3D-like relief.

The ability of DIC to optically section layer-by-layer through thicker specimens and define structural detail at, or even below, the resolution limit of the optical microscope, makes it the technique of choice for many researchers.

Phase Contrast Observation

Most living microorganisms or tissues are transparent and colorless, making it difficult to observe their minute structure. The phase contrast observation technique utilizes phase shifts in light rays passing through minute structures to produce image contrast and make them visible. This is the simplest and least expensive method used for unstained specimens.

Darkfield Observation

Simple Polarizing Observation

New Series of Objectives Created with Nikon's **Accumulated Optical Technologies**

1. CFI Plan Apochromat VC Series

- Top performance objectives with perfect correction of chromatic aberrations in the visible light range and excellent resolution throughout the view field
- Perfect choice for multi-stained, fluorescence specimens and when using brightfield and DIC techniques. In addition to the correction range of the conventional Apochromat series (435–660nm), axial chromatic aberration has been corrected up to the violet range (405nm), making these objectives highly effective for confocal applications.

2. CFI Plan Apochromat TIRF Series

- Highest N.A. of all Nikon objectives and specifically developed for TIRF (Total Internal Reflection Fluorescence) applications.
- A world-first temperature-change correction ring is included in the 60X oil objective. Users can easily correct temperature-induced changes-from 23°C (room temperature) to 37°C (physiological temperature)—in the refractive index of the immersion oil that can cause spherical aberration.

Intensity distribution of dot image

- CFI Plan Apochromat VC 60X Oil, N.A. 1.40
- CFI Plan Apochromat VC 60X WI, N.A. 1.20
- CFI Plan Apochromat VC 100X WI, N.A. 1.40
 - Observation of images with excellent brightness throughout the view field by minimizing the light loss around the edges—a critical criterion for digital-image capturing.
 - The 60X water-immersion type, in particular, features high spectral transmittance, even in the 360nm wavelength range, making it perfect for fluorescence observation of living organisms.

- CFI Plan Apochromat TIRF 60X Oil, N.A. 1.45 CFI Plan Apochromat TIRF 100X Oil, N.A. 1.45
 - The correction ring works perfectly in both DIC and epifluorescence microscopy of minute structures. It helps create optimal-quality images by preventing even minute deteriorations in image quality caused by any deviations in coverglass thickness or changes in operating environment, such as temperature fluctuations.

37°C after correction

CFI60 Objectives

Description	N.A.	W.D. (mm)	Remarks	
Brightfield				
Achromat flat field				
$CELAchromat 4 \times$	0.10	30.0		
CELAchromat 10 X	0.25	7.0		
	0.20	2.0		
	0.40	5.9	Curvin a la a da d	
CFI Achromat 40×	0.65	0.65	Spring loaded	
CFI Achromat LWD 40×C	0.55	2.7-1.7		C.C.0-2
CFI Achromat $60 \times$	0.80	0.3	Spring loaded	
CFI Achromat 100 $ imes$ oil	1.25	0.23	Spring loaded	
CFI Achromat 100 $ imes$ oil, iris	0.5-1.25	0.23	Spring loaded	with iris
Plan Achromat				
CFI Plan Achromat UW 1 \times	0.04	3.2		
CFI Plan Achromat UW 2 $ imes$	0.06	7.5		
CFI Plan Achromat $4 imes$	0.10	30.0		
CEL Plan Achromat $10 \times$	0.25	10.5		
CFI Plan Achromat 20×	0.40	12		
CEL Plan Achromat 40×	0.40	0.56	Spring loaded	
$\frac{\text{CEL Plan Achromat 40} \times \text{NCC}}{\text{CEL Plan Achromat 40} \times \text{NCC}}$	0.05	0.90	Spring loaded	No covor glaca
	0.00	0.48	Spring loaded	No cover glass
	0.90	0.35	Spring loaded	
CFI Plan Achromat 100× oil	1.25	0.20	Spring loaded	xx 1
CFI Plan Achromat $100 \times NCG$	0.90	0.26	Spring loaded	No cover glass
Plan Fluor				
CFI Plan Fluor $4 imes$	0.13	17.1		
CFI Plan Fluor 10 $ imes$	0.30	16.0		
CFI Plan Fluor 20 $ imes$	0.50	2.1		
CFI Plan Fluor ELWD 20×C	0.45	8.1-7.0		C.C.0-2
CFI Plan Fluor $20 \times MI$	0.75	Oil 0.35: Glycerin 0.34: Water 0.33	Spring loaded	Multi-immersion: Oil-glycerin-water
CEI Plan Eluor $40 \times$	0.75	0.72	Spring loaded	
CEL Plan Fluor $40 \times \text{oil}$	1.30	0.2	Spring loaded	Stopper
CEL Plan Fluor FLWD $40 \times C$	0.60	3 7-2 7	opinigioudeu	
$\frac{\text{CFI Plan Fluor 60 \times C}}{\text{CFI Plan Fluor 60 \times C}}$	0.85	0.3	Spring loaded	C = 0.012
$\frac{\text{CEL Plan Fluor 60 \times cil}}{\text{CEL Plan Fluor 60 \times cil}}$	0.07	0.2	Spring loaded	with iric
	0.7-1.27	0.22	Spring loaded	
CFI Plan Fluor 100 × dry	0.70	2.1-1.)	Coningloodod	
	0.90	0.3	Spring loaded	0.0.14-0.2
	1.30	0.2	Spring loaded	Stopper
CFI Plan Fluor 100 × oil, iris	0.5-1.3	0.2	Spring loaded	with iris
Plan Apochromat				
CFI Plan Apochromat 2×	0.10	8.5		
CFI Plan Apochromat 4 $ imes$	0.20	15.7		
CFI Plan Apochromat 10 $ imes$	0.45	4.0		
CFI Plan Apochromat 20 $ imes$	0.75	1.0	Spring loaded	
CFI Plan Apochromat $40 \times C$	0.95	0.14	Spring loaded	C.C.0.11-0.23
CFI Plan Apochromat $40 \times \text{oil}$	1.00	0.16	Spring loaded	Stopper
CFI Plan Apochromat $60 \times C$	0.95	0.15	Spring loaded	C.C.0.11-0.23
CFI Plan Apochromat $60 \times \text{oil}$	1.40	0.21	Spring loaded	Stopper
CEL Plan Apochromat $60 \times WI$	1.20	0.22	Spring loaded	C C 0 15-0 18: Water-immersion
$CEL Plan Apochromat 100 \times oil$	1.40	0.13	Spring loaded	Stopper
$\frac{\text{CFI Plan Apochromat 100 \times 001}}{\text{CFI Plan Apochromat 100 \times NCC oil}}$	1.10	0.17	Spring loaded	Stopper: No cover glass
Plan Anochromat VC	1.40	0.17	Spring loaded	
CEL Dian Anachromat VC 60X ail	1.40	0.12	Enringlandad	Stoppor
CFI Plan Apochiomat VC 60X VII	1.40	0.15	Spring loaded	<u>CC 0 15 0 19 Watar immersion</u>
CFI Plan Apochromat VC 60X WI	1.20	0.27	Spring loaded	CC.0.15-0.18; water-immersion
CFI Plan Apochromat VC 100X oil	1.40	0.13	Spring loaded	Stopper
Plan Apochromat TIRF				
CFI Plan Apochromat TIRF 60X oil	1.45	0.13	Spring loaded	C.C. 0.10-0.22
CFI Plan Apochromat TIRF 100X oil	1.45	0.13	Spring loaded	CG 0.17
S Fluor				
CFI S Fluor 4 $ imes$	0.20	15.5		
CFI S Fluor 10 \times	0.50	1.2	Spring loaded	
CFI S Fluor 20 \times	0.75	1.0	Spring loaded	
CFI S Fluor 40×C	0.90	0.3	Spring loaded	C.C.0.11-0.23
$\overline{\text{CFI S Fluor 40} \times \text{oil}}$	1.30	0.22	Spring loaded	
$\overline{CFISFluor100\times oil.iris}$	0.5-1 30	0.2	Spring loaded	
Water Dinning	5.7 1.70		Spring louded	
$\frac{1}{\text{CFL Fluor 10} \times \text{W}}$	0.30	2.0	Water dinning	
CEL Eluor 20 X W	0.50	2.0	Water dipping	
$\frac{\text{CELE[uor 40 \times W]}}{\text{CELE[uor 40 \times W]}}$	0.00	2.0	Water director	
$CELEWar 60 \times W$	0.00	2.0	Water dipping	
CLI LINOLON W	1.00	2.U	water dipping	

Phase Contrast Phase ring Achromat DL 10× 0.25 7.0 Phil CFI Achromat DDL 10× 0.25 6.2 CG 1.2 Phil CFI Achromat LWD DL 20× 0.40 3.9 Phil CFI Achromat LWD DL 20×F 0.40 3.1 CG 1.2 Phil CFI Achromat LWD DL 20×F 0.40 3.1 CG 1.2 Phil CFI Achromat LWD ADL 20×F 0.40 3.1 CG 1.2 Phil CFI Achromat LWD ADL 40×C 0.55 2.7-1.7 C.C.0-2 Ph2 CFI Achromat LWD ADL 40×F 0.55 2.7-1.7 C.C.0-2 Ph3 Pfan Achromat LWD ADL 40×F 0.55 2.7-1.7 C.C.0-2 Ph3 Pfan Achromat LWD ADL 40×F 0.55 2.7-1.7 C.C.0-2 Ph3 Pfan Achromat DL 100×C 01 1.25 0.23 Spring loaded Ph3 Pfan Achromat DL 100×C 01 1.25 0.2 Spring loaded Ph3 Pfan Achromat DL 100×C 01 1.25 0.2 Spring loaded Ph3 Pfan Fluor	Description	N.A.	W.D. (mm)	Remarks		
Achromat flat field Phase ring Phase ring CFI Achromat ADL 10× 0.25 7.0 Ph1 CFI Achromat LWD DL 20× 0.40 3.9 Ph1 CFI Achromat LWD DL 20×F 0.40 3.1 CG 1.2 Ph1 CFI Achromat LWD DL 20×F 0.40 3.1 CG 1.2 Ph1 CFI Achromat LWD DL 20×F 0.40 3.1 CG 1.2 Ph1 CFI Achromat LWD DL 40×C 0.55 2.71.7 C.C.0-2 Ph2 CFI Achromat LWD A0X 40×C 0.55 2.71.7 C.C.0-2 Ph2 CFI Achromat LWD A0X 40×C 0.55 2.71.7 C.C.0-2 Ph2 CFI Achromat DL 100×C 0.55 2.71.7 C.C.0-2 Ph1 CFI Ph2 Ph1 C.F.17 C.C.0-2 Ph2 CFI Achromat DL 100×C 0.55 2.71.7 C.C.0-2 Ph1 CFI Ph2 Ph1 C.F.17 C.C.0-2 Ph1 CFI Ph3 Achromat DL 10× 0.40 1.2 Ph1 CFI Ph3 Achromat DL 40× 0.65	Phase Contrast					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Achromat flat field					Phase ring
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat DL 10 $ imes$	0.25	7.0			Ph I
CFI Achromat LWD DL 20× 0.40 3.9 Ph1 CFI Achromat LWD ADX F 0.40 3.1 CG I.2 Ph1 CFI Achromat LWD ADL 20×F 0.40 3.1 CG I.2 Ph1 CFI Achromat LWD ADL 40×C 0.55 0.57-1.7 CC.0-2 Ph2 CFI Achromat LWD ADL 40×C 0.55 2.7-1.7 CC.0-2 Ph2 CFI Achromat LWD ADL 40×C 0.55 2.7-1.7 CC.0-2 Ph2 CFI Achromat LWD ADL 40×C 0.55 2.7-1.7 CC.0-2 Ph2 CFI Achromat LWD ADL 40×C 0.55 2.7-1.7 CC.0-2 Ph2 CFI Achromat DL 100× oil 1.25 0.23 Spring loaded Ph1 CFI Plan Achromat DL 10× 0.25 10.5 Ph1 CFI Plan Achromat DL 40× 0.66 0.56 Spring loaded Ph2 CFI Plan Achromat DL 10× 0.30 16.4 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 16.4 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 15.2 CG 1.2 Ph1 </td <td>CFI Achromat ADL 10$imes$</td> <td>0.25</td> <td>6.2</td> <td></td> <td>CG 1.2</td> <td>Ph I</td>	CFI Achromat ADL 10 $ imes$	0.25	6.2		CG 1.2	Ph I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat LWD DL 20 $ imes$	0.40	3.9			Ph I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat LWD DL 20×F	0.40	3.1		CG 1.2	Ph I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat LWD ADL 20 $ imes$ F	0.40	3.1		CG 1.2	Ph I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat DL 40 $ imes$	0.65	0.65	Spring loaded		Ph2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Achromat LWD DL 40×C	0.55	2.7-1.7		C.C.0-2	Ph2
CFI Achromat LWD ADL $40 \times C$ 0.55 2.7-1.7 C.C.0-2 Ph2 CFI Achromat DL $100 \times$ oil 1.25 0.23 Spring loaded Ph1 CFI Plan Achromat DL $10 \times$ 0.25 10.5 Ph1 CFI Plan Achromat DL $20 \times$ 0.40 1.2 Ph1 CFI Plan Achromat DL $40 \times$ 0.65 Spring loaded Ph2 CFI Plan Achromat DL $10 \times$ 0.65 0.25 Spring loaded Ph3 Plan Eluor 0.65 0.2 Spring loaded Ph3 CFI Plan Fluor DL $4 \times$ 0.13 16.4 CG 1.2 Ph1 CFI Plan Fluor DL $10 \times$ 0.30 15.2 CG 1.2 Ph1 CFI Plan Fluor DL $10 \times$ 0.30 15.2 C 1.2 Ph1 CFI Plan Fluor DL $20 \times$ 0.50 2.1 Ph1 CFI Plan Fluor DL $20 \times$ 0.50 2.1 Ph1 CFI Plan Fluor DL $20 \times$ 0.75 0.72 Spring loaded Ph2 C 1.2 Ph1 CFI Plan Fluor DL $40 \times$ 0.75 0.72 Spring loaded C 0.2 <td>CFI Achromat LWD ADL 40$imes$F</td> <td>0.55</td> <td>2.1</td> <td></td> <td>CG 1.2</td> <td>Ph I</td>	CFI Achromat LWD ADL 40 $ imes$ F	0.55	2.1		CG 1.2	Ph I
CFI Achromat DL 100× oil 1.25 0.23 Spring loaded Ph3 Plan Achromat DL 0.25 10.5 Ph1 CFI Plan Achromat DL 20× 0.40 1.2 Ph1 CFI Plan Achromat DL 20× 0.40 1.2 Ph1 CFI Plan Achromat DL 40× 0.65 0.56 Spring loaded Ph2 CFI Plan Achromat DL 100× oil 1.25 0.2 Spring loaded Ph3 Plan Eluor CGI Plan Fluor DL 4× 0.13 16.4 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 15.2 CG 1.2 Ph1 CFI Plan Fluor DL 20× 0.50 2.1 Ph1 CFI Plan Fluor DL 20× 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor ELWD DM 40×C 0.60 3.7-2.7 C.0-0-2 Ph2 CFI Plan Fluor ELWD DM 40×C 0.60	CFI Achromat LWD ADL 40×C	0.55	2.7-1.7		C.C.0-2	Ph2
Plan Achromat Ph1 CFI Plan Achromat DL 10× 0.25 10.5 Ph1 CFI Plan Achromat DL 20× 0.40 1.2 Ph1 CFI Plan Achromat DL 40× 0.65 0.56 Spring loaded Ph2 CFI Plan Achromat DL 100× oil 1.25 0.2 Spring loaded Ph2 CFI Plan Achromat DL 100× oil 1.25 0.2 Spring loaded Ph2 CFI Plan Fluor DL 10× 0.30 16.4 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 16.0 Ph1 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 15.2 CG 1.2 Ph1 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 15.2 CG 1.2 Ph1 CG 1.2 Ph1 CFI Plan Fluor DL 20× 0.50 2.1 Ph1 CG 1.2 Ph1 CFI Plan Fluor DL 0× 0.75 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor DL 0×C 0.60 3.7-2.7 Spring loaded Ph2 CFI Plan Fluor ELWD DM 40×C 0.6	CFI Achromat DL 100 $ imes$ oil	1.25	0.23	Spring loaded		Ph3
CFI Plan Achromat DL 10× 0.25 10.5 Ph1 CFI Plan Achromat DL 20× 0.40 1.2 Ph1 CFI Plan Achromat DL 40× 0.65 0.56 Spring loaded Ph2 CFI Plan Achromat DL 100× oil 1.25 0.2 Spring loaded Ph3 Plan Fluor	Plan Achromat					
CFI Plan Achromat DL 20× 0.40 1.2 Ph1 CFI Plan Achromat DL 40× 0.65 0.56 Spring loaded Ph2 CFI Plan Achromat DL 100× oil 1.25 0.2 Spring loaded Ph3 Plan Fluor Ph3 CFI Plan Fluor DL 10× 0.13 16.4 CG 1.2 Ph1 CFI Plan Fluor DL 10× 0.30 16.0 Ph1 CG 1.2 Ph1 CFI Plan Fluor DL 20× 0.50 2.1 Ph1 CG 1.2 Ph1 CFI Plan Fluor ELWD DM 20×C 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor DLL 40× 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor ELWD DM 40×C 0.60 3.7-2.7 C.C.0-2 Ph1 CFI Plan Fluor ELWD DM 40×C 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor ELWD DM 40×C 0.70 2.1-1.5 C.C.0.5-1.5 Ph2 CFI Plan Fluor ELWD DM 40×C 0.75 1.0 Spring loaded Stopper Ph3	CFI Plan Achromat DL 10 $ imes$	0.25	10.5			Ph I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Plan Achromat DL 20 $ imes$	0.40	1.2			Ph I
CFI Plan Achromat DL 100× oil1.250.2Spring loadedPh3Plan FluorCFI Plan Fluor DL 4×0.1316.0CG 1.2Ph1CFI Plan Fluor DL 10×0.3016.0Ph1CFI Plan Fluor DL 10×0.3015.2CG 1.2Ph1CFI Plan Fluor DL 20×0.502.1Ph1CFI Plan Fluor ELWD DM 20×C0.458.1-7.0C.C.0-2Ph1CFI Plan Fluor ELWD ADL 20×C0.458.1-7.0C.C.0-2Ph1CFI Plan Fluor ELWD ADX 20×C0.603.7-2.7Spring loadedPh2CFI Plan Fluor ELWD DM 40×C0.603.7-2.7C.C.0-2Ph2CFI Plan Fluor ELWD DL 40×C0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DL 40×C0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DL 40×C0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor DLL 100× oil1.300.2Spring loadedStopperPh3Plan Apochromat </td <td>CFI Plan Achromat DL 40$imes$</td> <td>0.65</td> <td>0.56</td> <td>Spring loaded</td> <td></td> <td>Ph2</td>	CFI Plan Achromat DL 40 $ imes$	0.65	0.56	Spring loaded		Ph2
Plan Fluor CG I PhL CFI Plan Fluor DLL 10× 0.30 16.0 PhI CFI Plan Fluor DLL 10× 0.30 15.2 CG I.2 PhI CFI Plan Fluor DL 10× 0.30 15.2 CG I.2 PhI CFI Plan Fluor DL 20× 0.50 2.1 Ph1 Ph1 CFI Plan Fluor DL 20× 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor ELWD ADL 20×C 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor DLL 40× 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor ELWD ADL 40×C 0.60 3.7-2.7 C.C.0-2 Ph2 CFI Plan Fluor ELWD DM 40×C 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor DLL 60×C 0.70 2.1-1.5 C.C.0-2 Ph2 Ph2 CFI Plan Fluor DLL 100× oil 1.30 0.2 Spring loaded Stopper Ph3 Plan Apochromat DM40×C 0.95 0.14 Spring loaded Stopper Ph3 CFI Plan Apochromat DM	CFI Plan Achromat DL 100 $ imes$ oil	1.25	0.2	Spring loaded		Ph3
CFI Plan Fluor DL $4 \times$ 0.13 16.4 CG 1.2 PhL CFI Plan Fluor DL $10 \times$ 0.30 16.0 Ph1 CFI Plan Fluor DL $10 \times$ 0.30 15.2 CG 1.2 Ph1 CFI Plan Fluor DL $10 \times$ 0.50 2.1 Ph1 CFI Plan Fluor DL $20 \times$ 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor DLL $40 \times$ 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor DL $40 \times$ 0.75 0.72 Spring loaded C.C.0-2 Ph1 CFI Plan Fluor DL $40 \times$ 0.75 0.72 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor ELWD DM $40 \times$ C 0.60 3.7-2.7 C.C.0-2 Ph2 CF1 Plan Fluor ELWD DLL $60 \times$ C 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor DLL $100 \times 0il$ 1.30 0.2 Spring loaded Stopper Ph3 Plan Apochromat M2 0.75 1.0 Spring loaded C.C.0.11-0.23 Ph2 CFI Plan Apochromat DM40 \times C 0.95 0.14	Plan Fluor					
CFI Plan Fluor DLL $10 \times$ 0.30 16.0 Ph1 CFI Plan Fluor DL $10 \times$ 0.30 15.2 CG 1.2 Ph1 CFI Plan Fluor DL $20 \times$ 0.50 2.1 Ph1 CFI Plan Fluor DLL $20 \times$ 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor DLL $40 \times$ 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor DLL $40 \times$ 0.75 0.72 Spring loaded Ph2 CFI Plan Fluor ELWD DM $40 \times C$ 0.60 3.7-2.7 C.C.0-2 Ph2 CFI Plan Fluor ELWD DADL $40 \times C$ 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor ELWD DLL $60 \times C$ 0.70 2.1-1.5 C.C.0.5-1.5 Ph2 CFI Plan Fluor DLL $100 \times cil$ 1.30 0.2 Spring loaded Stopper Ph3 Plan Apochromat	CFI Plan Fluor DL 4 $ imes$	0.13	16.4		CG 1.2	PhL
CFI Plan Fluor DL $10 \times$ 0.30 15.2 CG I.2 Ph1 CFI Plan Fluor DLL $20 \times$ 0.50 2.1 Ph1 CFI Plan Fluor ELWD DM $20 \times C$ 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor ELWD ADL $20 \times C$ 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor ELWD ADL $20 \times C$ 0.45 8.1-7.0 C.C.0-2 Ph1 CFI Plan Fluor ELWD DM $40 \times C$ 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor ELWD DM $40 \times C$ 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor ELWD DLL $60 \times C$ 0.60 3.7-2.7 Spring loaded C.C.0-2 Ph2 CFI Plan Fluor DLL $100 \times cil$ 1.30 0.2 Spring loaded C.C.0-2 Ph2 CFI Plan Apochromat 1.30 0.2 Spring loaded Ph2 Ph2 CFI Plan Apochromat DM20 \times 0.75 1.0 Spring loaded C.C.0.11-0.23 Ph2 CFI Plan Apochromat DM40 $\times cil$ 1.0 0.16 Spring loaded Stopper <td>CFI Plan Fluor DLL 10$imes$</td> <td>0.30</td> <td>16.0</td> <td></td> <td></td> <td>Ph I</td>	CFI Plan Fluor DLL 10 $ imes$	0.30	16.0			Ph I
CFI Plan Fluor DLL $20 \times$ 0.502.1Ph1CFI Plan Fluor ELWD DM $20 \times C$ 0.458.1-7.0C.C.0-2Ph1CFI Plan Fluor ELWD ADL $20 \times C$ 0.458.1-7.0C.C.0-2Ph1CFI Plan Fluor DLL $40 \times$ 0.750.72Spring loadedPh2CFI Plan Fluor ELWD DM $40 \times C$ 0.603.7-2.7C.C.0-2Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.702.1-1.5C.C.0.5-1.5Ph2CFI Plan Fluor DLL $100 \times oil$ 1.300.2Spring loadedStopperPh3Plan ApochromatTTTTTCFI Plan Apochromat DM40 $\times C$ 0.950.14Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM40 $\times C$ 0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM40 $\times c$ 0.950.15Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM60 $\times c$ 0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM60 $\times c$ 0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM60 $\times c$ 0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM100 $\times oil$ 1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM100 $\times oil$ 1.400.13S	CFI Plan Fluor DL 10 $ imes$	0.30	15.2		CG 1.2	Ph I
CFI Plan Fluor ELWD DM $20 \times C$ 0.45 $8.1-7.0$ C.C. $0-2$ Ph1CFI Plan Fluor ELWD ADL $20 \times C$ 0.45 $8.1-7.0$ C.C. $0-2$ Ph1CFI Plan Fluor DLL $40 \times$ 0.75 0.72 Spring loadedPh2CFI Plan Fluor ELWD DM $40 \times C$ 0.60 $3.7-2.7$ Spring loadedC.C. $0-2$ Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.60 $3.7-2.7$ Spring loadedC.C. $0-2$ Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.70 $2.1-1.5$ C.C. $0.5-1.5$ Ph2CFI Plan Fluor DLL $100 \times oil$ 1.30 0.2 Spring loadedStopperPh3Plan Apochromat M M M M M M M CFI Plan Apochromat DM40 $\times C$ 0.95 0.14 Spring loadedStopperPh3CFI Plan Apochromat DM40 $\times O$ 0.95 0.16 Spring loadedStopperPh3CFI Plan Apochromat DM40 $\times O$ 1.0 0.16 Spring loadedStopperPh3CFI Plan Apochromat DM60 $\times O$ 0.95 0.15 Spring loadedStopperPh3CFI Plan Apochromat DM60 $\times O$ 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM00 $\times O$ 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM60 $\times O$ 0.80 2.0 Water dippingPh2CFI Plan Apochromat DM100 $\times oil$ 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM100 $\times Oil$ 1.40 0.13 <td>CFI Plan Fluor DLL 20$imes$</td> <td>0.50</td> <td>2.1</td> <td></td> <td></td> <td>Ph 1</td>	CFI Plan Fluor DLL 20 $ imes$	0.50	2.1			Ph 1
CFI Plan Fluor ELWD ADL $20 \times C$ 0.45 $8.1-7.0$ C.C.O-2Ph1CFI Plan Fluor DLL $40 \times$ 0.75 0.72 Spring loadedPh2CFI Plan Fluor ELWD DM $40 \times C$ 0.60 $3.7-2.7$ C.C.O-2Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.60 $3.7-2.7$ Spring loadedC.C.O-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.60 $3.7-2.7$ Spring loadedC.C.O-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.70 $2.1-1.5$ C.C.O.5-1.5Ph2CFI Plan Fluor DLL $100 \times oil$ 1.30 0.2 Spring loadedStopperPh3Plan ApochromatPh2Ph2CFI Plan Apochromat DM20 \times 0.75 1.0 Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM40 \times C 0.95 0.14 Spring loadedStopperPh3CFI Plan Apochromat DM40 \times O 0.95 0.15 Spring loadedStopperPh3CFI Plan Apochromat DM60 \times Oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM60 \times oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM100 \times oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM60 \times Oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM100 \times oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM20 \times 0.80 2.0 <td>CFI Plan Fluor ELWD DM 20$imes$C</td> <td>0.45</td> <td>8.1-7.0</td> <td></td> <td>C.C.0-2</td> <td>Ph I</td>	CFI Plan Fluor ELWD DM 20 $ imes$ C	0.45	8.1-7.0		C.C.0-2	Ph I
CFI Plan Fluor DLL $40 \times$ 0.750.72Spring loadedPh2CFI Plan Fluor ELWD DM $40 \times C$ 0.60 $3.7-2.7$ C.C.0-2Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.60 $3.7-2.7$ Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.70 $2.1-1.5$ C.C.0.5-1.5Ph2CFI Plan Fluor DLL $100 \times oil$ 1.300.2Spring loadedStopperPh3Plan ApochromatCFI Plan Apochromat DM20 ×0.751.0Spring loadedPh2CFI Plan Apochromat DM40 × C0.950.14Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM40 × C0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM40 × Oil1.00.16Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM60 × C0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM60 × C0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM100 × oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM100 × oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM20 ×0.802.0Water dippingPh2CFI Plan Apochromat DM100 × oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM100 × oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM20 × Oil1.400.13	CFI Plan Fluor ELWD ADL $20 \times C$	0.45	8.1-7.0		C.C.0-2	Ph I
CFI Plan Fluor ELWD DM $40 \times C$ 0.603.7-2.7C.C.0-2Ph2CFI Plan Fluor ELWD ADL $40 \times C$ 0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.702.1-1.5C.C.0.5-1.5Ph2CFI Plan Fluor DLL $100 \times oil$ 1.300.2Spring loadedStopperPh3Plan ApochromatCFI Plan Apochromat DM20×0.751.0Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM40 × C0.950.14Spring loadedStopperPh3CFI Plan Apochromat DM40 × oil1.00.16Spring loadedStopperPh3CFI Plan Apochromat DM40 × oil1.00.16Spring loadedStopperPh3CFI Plan Apochromat DM40 × oil1.00.16Spring loadedStopperPh3CFI Plan Apochromat DM60 × C0.950.15Spring loadedStopperPh3CFI Plan Apochromat DM60 × Oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM100 × oil1.400.13Spring loadedStopperPh3CFI Fluor DLL $40 \times W$ 0.802.0Water dippingPh2CFI Fluor DLL $40 \times W$ 0.256.2CG 1.2CG 1.2CFI HMC $10 \times$ 0.256.2CG 1.2CF 1.4CFI HMC $10 \times C$ 0.552.7-1.7C.C.0-2C.0-2	CFI Plan Fluor DLL 40 $ imes$	0.75	0.72	Spring loaded		Ph2
CFI Plan Fluor ELWD ADL $40 \times C$ 0.603.7-2.7Spring loadedC.C.0-2Ph2CFI Plan Fluor ELWD DLL $60 \times C$ 0.702.1-1.5C.C.0.5-1.5Ph2CFI Plan Fluor DLL $100 \times oil$ 1.300.2Spring loadedStopperPh3Plan Apochromat </td <td>CFI Plan Fluor ELWD DM $40 \times C$</td> <td>0.60</td> <td>3.7-2.7</td> <td></td> <td>C.C.0-2</td> <td>Ph2</td>	CFI Plan Fluor ELWD DM $40 \times C$	0.60	3.7-2.7		C.C.0-2	Ph2
CFI Plan Fluor ELWD DLL $60 \times C$ 0.702.1-1.5C.C.0.5-1.5Ph2CFI Plan Fluor DLL $100 \times$ oil1.300.2Spring loadedStopperPh3Plan Apochromat </td <td>CFI Plan Fluor ELWD ADL $40 \times C$</td> <td>0.60</td> <td>3.7-2.7</td> <td>Spring loaded</td> <td>C.C.0-2</td> <td>Ph2</td>	CFI Plan Fluor ELWD ADL $40 \times C$	0.60	3.7-2.7	Spring loaded	C.C.0-2	Ph2
CFI Plan Fluor DLL 100× oil1.300.2Spring loadedStopperPh3Plan Apochromat	CFI Plan Fluor ELWD DLL 60 $ imes$ C	0.70	2.1-1.5		C.C.0.5-1.5	Ph2
Plan ApochromatCFI Plan Apochromat DM20× 0.75 1.0 Spring loadedPh2CFI Plan Apochromat DM40×C 0.95 0.14 Spring loaded $C.C.0.11-0.23$ Ph2CFI Plan Apochromat DM40× oil 1.0 0.16 Spring loadedStopperPh3CFI Plan Apochromat DM60×C 0.95 0.15 Spring loadedC.C. $0.11-0.23$ Ph2CFI Plan Apochromat DM60×oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM60×oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM100×oil 1.40 0.13 Spring loadedStopperPh3CFI Fluor DLL $40 \times W$ 0.80 2.0 Water dippingPh2CFI HMC $10 \times$ 0.25 6.2 CG 1.2 CG 1.2 CFI HMC $10 \times$ 0.25 6.2 CG 1.2 CG 1.2 CFI HMC LWD $20 \times F$ 0.40 3.1 CG 1.2 CI 2 CFI HMC LWD $40 \times C$ 0.55 $2.7-1.7$ C.C. $0-2$ CI 2	CFI Plan Fluor DLL 100 $ imes$ oil	1.30	0.2	Spring loaded	Stopper	Ph3
CFI Plan Apochromat DM20× 0.75 1.0 Spring loadedPh2CFI Plan Apochromat DM40×C 0.95 0.14 Spring loaded $C.C.0.11-0.23$ Ph2CFI Plan Apochromat DM40× oil 1.0 0.16 Spring loadedStopperPh3CFI Plan Apochromat DM60×C 0.95 0.15 Spring loadedC.C. $0.11-0.23$ Ph2CFI Plan Apochromat DM60× oil 1.40 0.13 Spring loadedStopperPh3CFI Plan Apochromat DM100× oil 1.40 0.13 Spring loadedStopperPh3CFI Fluor DLL $40 \times W$ 0.80 2.0 Water dippingPh2CFI HMC $10 \times$ 0.25 6.2 CG 1.2 CG 1.2 CFI HMC $10 \times$ 0.40 3.1 CG 1.2 CG 1.2 CFI HMC LWD $20 \times F$ 0.40 3.1 CG 1.2 CI 2 CFI HMC LWD $40 \times C$ 0.55 $2.7-1.7$ C.C.0-2CI 2	Plan Apochromat					
CFI Plan Apochromat DM40×C0.950.14Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM40× oil1.00.16Spring loadedStopperPh3CFI Plan Apochromat DM60×C0.950.15Spring loadedC.C.0.11-0.23Ph2CFI Plan Apochromat DM60× oil1.400.13Spring loadedStopperPh3CFI Plan Apochromat DM100× oil1.400.13Spring loadedStopperPh3CFI Fluor DLL 40×W0.802.0Water dippingPh2CFI HMC 10×0.256.2CG 1.2CG 1.2CFI HMC 10×0.403.1CG 1.2CG 1.2CFI HMC LWD 20×F0.403.1CG 1.2C.0-2	CFI Plan Apochromat DM20 $ imes$	0.75	1.0	Spring loaded		Ph2
$\begin{tabular}{ c c c c c c c c c c c } \hline CFI Plan Apochromat DM40 \times oil & 1.0 & 0.16 & Spring loaded & Stopper & Ph3 \\ \hline CFI Plan Apochromat DM60 \times c & 0.95 & 0.15 & Spring loaded & C.C.0.11-0.23 & Ph2 \\ \hline CFI Plan Apochromat DM60 \times oil & 1.40 & 0.13 & Spring loaded & Stopper & Ph3 \\ \hline CFI Plan Apochromat DM100 \times oil & 1.40 & 0.13 & Spring loaded & Stopper & Ph3 \\ \hline Water Dipping & & & & & & & \\ \hline CFI Fluor DLL 40 \times W & 0.80 & 2.0 & Water dipping & Ph2 \\ \hline Hoffman Modulation Contrast® & & & & & \\ \hline CFI HMC 10 \times & 0.25 & 6.2 & CG 1.2 \\ \hline CFI HMC LWD 20 \times F & 0.40 & 3.1 & CG 1.2 \\ \hline CFI HMC LWD 40 \times C & 0.55 & 2.7-1.7 & C.C.0-2 \\ \hline \end{tabular}$	CFI Plan Apochromat DM40×C	0.95	0.14	Spring loaded	C.C.0.11-0.23	Ph2
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CFI Plan Apochromat DM40 $ imes$ oil	1.0	0.16	Spring loaded	Stopper	Ph3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFI Plan Apochromat DM60×C	0.95	0.15	Spring loaded	C.C.0.11-0.23	Ph2
CFI Plan Apochromat DM100×oil 1.40 0.13 Spring loaded Stopper Ph3 Water Dipping CFI Fluor DLL 40×W 0.80 2.0 Water dipping Ph2 Hoffman Modulation Contrast® 0.25 6.2 CG 1.2 CG 1.2 CFI HMC 10× 0.40 3.1 CG 1.2 CG 1.2 CFI HMC LWD 20×F 0.40 3.1 CG 1.2 CC 1.2	CFI Plan Apochromat DM60 $ imes$ oil	1.40	0.13	Spring loaded	Stopper	Ph3
Water Dipping CFI Fluor DLL 40×W 0.80 2.0 Water dipping Ph2 Hoffman Modulation Contrast® CFI HMC 10× 0.25 6.2 CG 1.2 CFI HMC 10× 0.40 3.1 CG 1.2 CFI HMC LWD 20×F 0.55 2.7-1.7 C.C0-2	CFI Plan Apochromat DM100 $ imes$ oil	1.40	0.13	Spring loaded	Stopper	Ph3
CFI Fluor DLL 40×W 0.80 2.0 Water dipping Ph2 Hoffman Modulation Contrast® CG1 12 CFI HMC 10× 0.25 6.2 CG 1.2 CFI HMC LWD 20×F 0.40 3.1 CG 1.2 CFI HMC LWD 40×C 0.55 2.7-1.7 C.C.0-2	Water Dipping					
Hoffman Modulation Contrast® CFI HMC 10× 0.25 6.2 CG 1.2 CFI HMC LWD 20×F 0.40 3.1 CG 1.2 CFI HMC LWD 40×C 0.55 2.7-1.7 C.C.0-2	CFI Fluor DLL 40×W	0.80	2.0	Water dipping		Ph2
CFI HMC 10× 0.25 6.2 CG 1.2 CFI HMC LWD 20×F 0.40 3.1 CG 1.2 CFI HMC LWD 40×C 0.55 2.7-1.7 C.C.0-2	Hoffman Modulation Contrast®					
CFI HMC LWD 20×F 0.40 3.1 CG 1.2 CFI HMC LWD 40×C 0.55 2.7-1.7 C.C.0-2	CFI HMC 10 \times	0.25	6.2		CG 1.2	
CFI HMC LWD 40×C 0.55 2.7-1.7 C.C.0-2	CFI HMC LWD 20×F	0.40	3.1		CG 1.2	
	CFI HMC LWD 40×C	0.55	2.7-1.7		C.C.0-2	

Condensers

For Upright Microscopes Type N.A. Achromat swing-out condenser 1-100× 0.8*1/0.12*2

Achromat swing-out condenser 1-100 $ imes$	0.8*1/0.12*2	1-100×
Achromat swing-out condenser	0.9*1/0.22*2	2-100×
Achromat/Aplanat condenser	1.4	10-100×
LWD achromat condenser	0.65	4-40×
Low power condenser	0.15	1-4×
Achromat condenser	0.85	4-100×
Abbe condenser	0.9	4-100×
	*	1 (4–100X) *2 (1–4X)

For Inverted Microscopes

Туре		N.A.	W.D.(mm)	Ph module	HMC module	DIC module	Magnifications
System turret	ELWD system condenser lens	0.3	75	L.1.2		NL	2~60×
condenser	LWD system condenser lens	0.52	30	L.1.2.3	MC1.MC2.MC3	NL.NM.NH	4~100×
	HMC condenser lens	0.4	44		MC1.MC2.MC3		10~40×
Condenser	Dry top lens for high N.A. condenser	0.85	5			NM.NH	10~100×
	Water immersion top lens for high N.A. condenser	0.9	4			NM.NH	10~100×
	Oil immersion top lens for high N.A. condenser	1.4	1.92			NM.NH-SS	10~100×
	ELWD condenser for phase contrast	0.3	75	L.1.2.3			2~20×
	SLWD condenser	0.12	190	L.1			4~40×

Magnifications

CG : Cover Glass thickness (mm) CC : Correction Collar (mm)

Туре	N.A.	Magnifications
Darkfield condenser (dry)	0.8-0.95	10×-40×
Darkfield condenser (oil)	1.2-1.43	20×-100×
Universal condenser (dry)	0.9/0.13	2-100×
Universal condenser (oil)	1.4	20-100×
Phase contrast condenser	0.9	10-100×

CFI60 Objectives

Apodized Phase Contrast Series Nikon specifically developed this series for phase contrast observations by using its proprietary Apodization process to improve the objective's phase ring. Division activities taking place within a specimen—hitherto often obscured by unwanted halos—can now be observed more clearly.

CFI Plan Achromat Series

Nikon's new CFI Plan Achromat series provides incredible image flatness over the entire 25mm field of view, with chromatic aberration corrected throughout the entire visible spectrum. These objectives are suitable not only for routine laboratory work but for photomicrography.

CFI Plan Apochromat Series for Phase Contrast Correction for chromatic aberration has been improved and now extends across the entire visible spectrum to include the violet wavelength. High Numerical Apertures with longer working distances, comprehensive aberration correction, and superior flatness of field of view make Nikon's new CFI Plan Apochromat series for phase contrast ideal for the most demanding research projects. Moreover, these objectives can be used for DIC observation.

CFI Achromat Series for Phase Contrast Correction for chromatic aberration in this new series has been dramatically improved and is now at the same level as the CFI Plan Achromat Series. These objectives now boast performance far outstripping their cost.

CFI Plan Apochromat Series This new CFI Plan Apochromat series features longer working distances with high Numerical Apertures and is designed to correct all optical aberrations throughout the visible spectrum from violet to red from center to edges across the entire 25mm field of view. Superior image flatness and color reproduction, plus resolving power at the theoretical limit of today's optical technology are also featured.

CFI Achromat Series

Correction for chromatic aberration in this new series has been dramatically improved and is now at the same level as the CFI Plan Achromat Series. These new CFI Achromat objectives were also corrected for spherical aberration and coma and image flatness across the 22mm field of view has been drastically improved. The result: truly exceptional quality for this class of objectives.

CFI Plan Fluor Series for Phase Contrast

These objectives are multi-purpose: they can be

or Nomarski DIC observations. They facilitate

high-quality fluorescence observation and

minute structures in phase contrast or DIC

minimize fluorescence photo bleaching.

provide exceptionally detailed resolution of

used for brightfield, fluorescence, phase contrast,

observation. The use of phase contrast to find the

desired portion of the specimen before switching

to fluorescence observation is an excellent way to

CFI Plan Fluor ELWD Series for Phase Contrast

these objectives are well suited for fluorescence

microscopes. Because of their superior optical

techniques, including brightfield, fluorescence

design, CFI Plan Fluor ELWD DM objectives can be used universally for all other observation

Offering superb flatness of field, high UV

Apertures with extra long working distances,

transmission rates, and high Numerical

observations, especially with inverted

phase contrast, and Nomarski DIC

CFI Plan Fluor Series

Featuring an extra-high transmission rate, especially in the ultraviolet wavelength, and flatness of field comparable to the CFI Plan Achromat series, the CFI Plan Fluor series is designed for fluorescence observation and photomicrography. Because of this improvement in quality, these objectives can function as multipurpose objectives for brightfield, fluorescence, polarizing, and DIC observations.

CFI S Fluor Series

This new CFI S Fluor series ensures a high transmission rate of ultraviolet wavelengths down to 340 nm for fluorochromes like indo-1, fura-2, and fluor-3. Also, these objective have improved signal-to-noise ratios (S/N) for short wavelengths and have high N.A., making the fluorescence images they produce significantly sharper and brighter.

CFI Plan Achromat Series for Phase Contrast Nikon's new CFI Plan Achromat series provides incredible image flatness over the entire 25mm field of view, with chromatic aberration corrected throughout the entire visible spectrum. With incredible image sharpness, these objectives can be used for routine laboratory work as well as exacting research.

Hoffman Modulation Contrast Series These objectives have been completely redesigned by Nikon, allowing the contrast direction to be changed using a modulator inside the objective. That direction, once set, is maintained over the entire magnification range from 10X to 40X.

Note: Hoffman Modulation Contrast and HMC are registered trademarks of Modulation Optics Inc.

Nikon offers a wide variety of CFI objectives. To assist the user they are clearly marked with information on the objective barrel such as: which DIC module or Phase Ring to use.

(1) Magnification and Color Code

A color coded ring on the barrel identifies the magnification of the objective:

Mag.	1X	2X	4X	10X	20X	40X	50X	60X	100X
Color code	Black	Gray	Red	Yellow	Green	Light Blue	Light Blue	Cobalt Blue	White

Note: Nikon offers the lowest magnification objective commercially available, the Macro 0.5X on the E800M and E1000M microscopes.

(2) Numerical Aperture (N.A.)

N.A. is the most important factor in defining the performance characteristics of an objective. N. A.= n sin θ n: the refractive index of the media at d-line (587nm) For dry objective n=1.000 (air)

For oil objective n=1.515 (oil)

For water objective n = 1.333 (water)

 θ : Half angle of incident rays to the top lens of the objective

The higher N.A., the higher resolving power. When the resolving power is defined as the power to recognize the two points,

$R = 0.61 \frac{\lambda}{NA}$

If $\lambda = 0.55 \,\mu$ m (Green light) and N.A.=1.4, resolving power (R) = $0.61 \, \frac{0.55}{1.4} = 0.24 \,\mu$ m The higher N.A. the brighter image we take.

Brightness: $B \propto \left\{ \frac{N.A.}{\text{Total Magnification}} \right\}$

The higher N.A., the shallower the depth of focus (DOF).

 $DOF = \frac{\lambda}{N A^2}$

(3) Working Distance

Working distance (W.D.) defines the distance between the top lens of the objective and the surface of the cover glass.

CFI60 objectives can offer longer working distance with high numerical aperture.

(4) Correction Ring

Dry objectives with high Numerical Aperture are susceptible to spherical and other aberrations which can impair resolution and contrast when used with a cover glass whose thickness differs from the specified value. A 1 1/2 cover glass (0.17mm thick) should be used as standard, however not all 11/2 cover glasses are exactly 0.17mm and many specimens have media between them and the cover glass. The correction ring is used to adjust for these subtle differences to ensure the optimum objective performance.

How to use the correction ring

- Position the ring at 0.17. The thickness of the standard cover glass is 0.17mm.
- Focus the lens on a small artifact in the specimen.
 Rotate the ring very slightly and focus the lens again to check if the image has improved or degraded.
- Repeat the above step to determine if the image is improving or degrading in the direction you are turning the ring.
- If the image has degraded, follow the same procedure in the opposite direction to find the position offering optimum resolving power and contrast.

(5) Retraction Stopper

Some objectives for oil immersion have a retraction stopper. In order to prevent clean slides from being accidentally smeared with immersion oil, the retraction assembly can be engaged by pushing in the front element and twisting it to the right. This will lock the objective in the up position so it will not leave immersion oil on a clean slide as the nosepiece is rotated. Twisting to the left will release the retracted objective for use.

(6) Cover-Glass

For optimum performance, the thickness of the cover glass should be 0.17mm. For example, at N.A.=0.95, a 0.01mm difference in thickness reduces image formation by 45% from the ideal image.

	Difference in cover glass thickness			
N.A.	0.01mm	0.02mm		
0.3	100%	100%		
0.45	100	100		
0.7	98	92		
0.85	81	43		
0.95	45	29		

(7) Application Markings

DIC: for Differential Interference Contrast DM: Phase contrast, Dark contrast middle type DL: Phase contrast, Dark contrast light type DLL: Phase contrast, Lower contrast type

(8) Immersion Oil—cleaning

After using immersion oil, gently blot the lens dry with lens tissue. Then slightly moisten a piece of lens tissue with petroleum benzene (Naphtha) and clean off all traces of the oil from the immersion objective. Cleaning is essential for water immersion objectives as well; after use, wipe the water off the top lens. Photo samples courtesy of:

- 1. Heart tumor CFI Plan Apochromat 10X Dr. Yasuko Tomizawa, Mr. Akira Miyama Tokyo Medical Woman's Collage, Japan
- 2. Cytological Preparation of Tumour Cells showing Cytoplasmic Vacuoles CFI Plan Apochromat 60X Dr. Andrew M.T. Clarke Consultant Histopathologist York District Hospital, U.K.
- 3. Artery CFI Plan Apochromat 40X
- 4. Asbestos body (ferruginous body) in lung adjustment to malignant mesothelioma CFI Plan Apochromat 60X Dr. Andrew M.T. Clarke Consultant Histopathologist York District Hospital, U.K.
- 5. Baby Mouse Cross Section CFI Macro 0.5X
- 6. Multi Polar Neuron-Human CFI Plan Apochromat 100X oil
- 7. Mouse CFI Plan Apochromat VC 60X oil
- 8. Mouse CFI Plan Apochromat VC 60X oil

- 9.11.12. (Mycoplasma-infected) Culture of COS cells (Green African Monkey cells) CFI Plan Apochromat 100X oil Dr. Nancy Kedersha, Ph.D. Research Associate Brigham & Woman's Hospital, Harverd Medical School Dept. of Rheumatology, Immunology & Allergy, U.S.A.
- 10. Chromosome CFI Plan Apochromat 100X oil Dr. Fumiharu Yagasaki, M.D. First Dept. of Internal Medicine, Saitama Medical School, Japan
- 13. Zebrafish lung CFI Fluor 40X W
- 14. Radiolaria (single) CFI Plan Apochromat 20X Dr. Robert Smith Formally Cornell Univ., Fellow of Royal Microscopy Society Consultant for Smith Kline Lab. & Pharmaceutical Co., U.S.A.
- 15. Nerve tumor, TGW CFI Plan Fluor ELWD 40X DM
- 17. Monkey Kidney, JTC-12 CFI Plan Fluor ELWD 40X DM
- 18. Bone CFI Plan Apochromat 20X
- 19. Mouse Scalp CFI Plan Apochromat 4X

Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. March 2004. ©1998-04 NIKON CORPORATION

ISO 14001 Certified NIKON INSTECH CO., LTD.

NIKON INSTECH CO., LTD.

Parale Mitsui Bldg., 8, Higashida-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0005, Japan phone: +81-44-223-2167 fax: +81-44-223-2182 www.nikon-instruments.jp/eng/

NIKON INSTRUMENTS (SHANGHAI) CO., LTD. CHINA phone: +86-21-5058-5055 fax: +86-21-5058-5060 NIKON SINGAPORE PTE LTD SINGAPORE phone: +65-6559-3618 fax: +65-6559-3668 NIKON MALAYSIA SDN. BHD. MALAYSIA phone: +60-3-78763887 fax: +60-3-78763387

NIKON INSTRUMENTS EUROPE B.V.

P.O. Box 222, 1170 AE Badhoevedorp, The Netherlands phone: +31-20-44-96-222 fax: +31-20-44-96-298 www.nikon-instruments.com/

NIKON FRANCE S.A.

FRANCE phone: +33-1-45-16-45-16 fax: +33-1-45-16-00-33 NIKON GMBH GERMANY phone: +49-211-9414-0 fax: +49-211-9414-322 NIKON INSTRUMENTS S.p.A. ITALY phone: + 39-55-3009601 fax: + 39-55-300993 NIKON AG SWITZERLAND phone: +41-43-277-2860 fax: +41-43-277-2861 NIKON UK LTD. UNITED KINGDOM phone: +44-20-8541-4440 fax: +44-20-8541-4584

NIKON INSTRUMENTS INC.

1300 Walt Whitman Road, Melville, N.Y. 11747-3064, U.S.A. phone: +1-631-547-8500; +1-800-52-NIKON (within the U.S.A.only) fax: +1-631-547-0306 www.nikonusa.com/

ORATION

NIKON CANADA INC.

CANADA phone: +1-905-625-9910 fax: +1-905-625-0103

NIKON CORPORATION

Fuji Bldg., 2-3, Marunouchi 3-chome, Chiyoda-ku, Tokyo 100-8331, Japan www.nikon.com/

Printed in Japan (0404-05)T

Code No. 2CE-MSSH-1

En