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ARTICLE INFO ABSTRACT
Article history: No solid-state fluorescence is observed for 9-(diethylamino)benzo[a]phenoxazin-5-one (Nile Red). How-
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5-one showed fluorescence maximum at 717 nm in solid state with fluorescence quantum yield 0.024.
X-ray crystallographic analysis suggests that prevention of network m— interactions by the bulky fluo-

rine-containing and dibutylamino groups is essential to show solid-state fluorescence.
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Survey of solid-state fluorescence of organic compounds is one
of the most exciting subjects in connection with emitters in organ-
ic electroluminescence (EL) devices' and—solid-state organic dye
laser.? 7-(Diarylamino)-4-methylcoumarins,® ter(9,9-diarylfluo-
renes)s,* diphenylanthrazolines,” o, B-dicyanostilbenes,® diketopyr-
rolopyrroles,” 9,10-disubstituted anthracenes,® bisazomethine
dye,® heterocyclic quinol-type compounds,'® perylenediimides,'’
and dipyroroboradiazaindacenes'? have been reported to show so-
lid-state fluorescence. A few reddish solid-state fluorescent com-
pounds such as 4,7-di(2-thienyl)benzothiadiazoles, '3
fumaronitriles,!* 3,6-dicyanopyrazines,'®> and 2,3-dicyano-6H-1,4-
diazepins'® have been reported. However, no near-infrared solid-
state fluorescent compounds have been reported so far. To our
knowledge, the most bathochromic solid-state fluorescent com-
pound is 4-(dicyanomethylene)-4H-pyran derivative, there being
the fluorescence maximum (Fpnax) 695 nm.!” Near-infrared (NIR)
solid-state fluorescent compounds have potential application in
the field of security technology.

Nile Red is a traditional neutral naphthooxazine dye showing
medium fluorescence in solution (fluorescence quantum yield
(&%) =0.59 in ethanol). However, Nile Red does not show fluores-
cence in solid state. The excited state in condensed and crystalline
states is deactivated by strong intermolecular interactions. There-
fore, introduction of bulky substituent(s) into fluorophores is good
methodology to improve solid-state fluorescence intensity. As fluo-
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rine-containing substituents are much more bulky than the corre-
sponding fluorine-free ones, introduction of fluorine-containing
group(s) into fluorophores is very effective to depress intermolec-
ular interactions between the molecules. It is clear that perflu-
oro[4-methyl-3-(1-methylethyl)-2-penten-2-oxy] group derived
from perfluoropropylene trimer, in which two perfluoro(isopropyl)
and one trifluoromethyl groups are contained in a molecule, is
much more bulky than well-known and usually-used tert-butyl
group. No application of bulky perfluoroalkenyloxy-containing
compounds for advanced materials has been reported so far. We
thought that introduction of this bulky fluorine-containing group
into naphthooxazine dye might be effective to prevent its intermo-
lecular interactions. We report herein NIR solid-state fluorescent
naphthooxazine dyes.
9-(Dialkylamino)benzo[a]phenoxazin-5-ones 14-20 were pre-
pared as shown in Scheme 1. 5-Dialkylamino-2-nitrosophenol
hydrochloric acid salts 1 and 2 were allowed to react with naph-
thalenediols 3-5 to give the corresponding hydroxy-substituted
naphthooxazine intermediates 6-9. Then, compounds 6-9 were al-
lowed to react with perfluoropropylene trimer 10, a 1:2 mixture of
[(F3C)2FC]2C:CF(CF3) and [(F3C)2FC](F3CF2C)C:C(CF3)2, in the
presence of sodium hydride to give 14-17. The former isomer more
smoothly reacts with phenoxide ions than the latter one to give a
perfluoro(vinylether) product.'® Compound 9 was allowed to react
with perfluoropropylene dimer 11 to give 18 in a 37% yield. Com-
pound 9 also reacted with butyl iodide (12) and 3,5-(di-tert-butyl)-
benzyl bromide (13) in the presence of potassium carbonate and
16-crown-6-ether to give 19 and 20, respectively. Compounds 21
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Scheme 1. Reagents and conditions: (i) 1 (1.0equiv) or 2 (1.0 equiv), 3-5
(1.0 equiv), reflux, 4 h, DMF, (ii) 6-9 (1.0 equiv), 10 (2.5 equiv) or 11 (2.5 equiv),
NaH (1.0 equiv) or TEA (1.0 equiv), rt, DMF, 2-18 h, iii) 9 (1.0 equiv), 12 (2.5 equiv)
or 13 (2.5 equiv), K,CO3 (1.0 equiv), 18-crown-6-ether, rt, 10 h.

(Nile Red) and 22 were also prepared as described in the litera-
ture.'® The detailed procedure for the synthesis of 14-22 is shown
in Supplementary data.

The UV-vis absorption and fluorescence spectra of naphthoox-
azine dyes in dichloromethane are shown in Figure 1. The results
are also listed in Table 1. The absorption maximum (4max) of napht-
hooxazine dyes was more bathochromic in the following order of
compound: 17 (574nm), 18 (573), 14 (569)>20 (551), 19
(547) > 22 (543), 21 (538). Thus, introduction of perfluoro(alkenyl-
oxy) and alkoxy group caused bathochromic shift due to less stable
HOMO energy level. 6-Perfluoro(alkenyloxy) derivative 17 (574)
was more bathochromic than the 2- and 3-perfluoro(alkenyloxy)
derivatives 15 (558) and 16 (557). The molar absorption coeffi-
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Figure 1. UV-vis absorption and fluorescence spectra of 14-22 in dichloromethane
measured at the concentration of 1.0 x 107> mol dm~> at 25 °C. Solid and dotted
lines represent UV-vis absorption and fluorescence spectra, respectively.

cients (&) of 14-22 were observed in the range of 54,800-
61,900 dm>® mol~' cm™!, there being no significant difference
among them. The F,x was more bathochromic in the order of
compound: 17 (632 nm), 18 (631), 20 (630), 19 (627), 14
(625)>16 (614),15 (613) > 22 (608), 21 (604). This result is attrib-
uted to slightly large Stokes shift of 19 and 20. The &¢ was larger in
the order of compound: 21 (0.87), 22 (0.87) > 16 (0.76), 15 (0.74),
17 (0.69), 18 (0.66), 14 (0.56) > 20 (0.12), 19 (0.11). Thus, 6-unsub-
stituted derivatives showed the most intense fluorescence fol-
lowed by perfluoro(alkenyloxy) and alkoxy derivatives in
solution. Low @&; of 19 and 20 may come from free rotation of
the flexible alkoxy linkage in solution.
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Figure 2. Fluorescence spectra of 14-22 in solid state. l.x was obtained by
measuring diffusion reflection spectra given in Kubelka-Munk Units.

Table 1
Optical properties of naphthooxazine dyes
Run Compd Dichloromethane?® Solid state?
/max(€) (nm) Fiax (nm) (pfb SS¢ (nm) Finax (nm) ‘pfb

1 14 569 (58,600) 625 0.54 56 —€ —¢
2 15 558 (61,400) 613 0.74 55 734 0.008
3 16 557 (61,900) 614 0.76 57 729 0.007
4 17 574 (58,000) 632 0.69 60 717 0.024
5 18 573 (54,800) 631 0.66 58 727 0.015
6 19 547 (60,800) 627 0.11 80 666 0.010
7 20 551 (58,900) 630 0.12 79 - —€
8 21 538 (61,000) 604 0.87 66 —€ —€
9 22 543 (60,700) 608 0.87 65 —€ —€

3 Measured at the concentration of 1.0 x 10~> mol dm 3 at 25 °C.

b Determined by a Hamamatsu Photonics Absolute PL Quantum Yield Measurement System C9920-02.

¢ Stokes shift.

4 Excitation wavelength (/ex) was obtained by measuring diffuse reflectance spectra given in Kubelka-Munk units.

e

Too weak (@< 0.003).
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Figure 3. X-ray crystallographic analysis of 22.

The fluorescence spectra of 14-22 in solid state are shown in oro(alkenyloxy) group is attached at the 6-position, showed Fax
Figure 2. The results are also listed in Table 1. No clear solid- at around 717 and 727 nm with & 0.024 and 0.015, respectively.
state fluorescence was observed for 14, 15, 16, 20, 21, and 22. The Fax of 17 in solid state and in dichloromethane were ob-
Interestingly, compounds 17 and 18, in which a bulky perflu- served at 717 and 632 nm with half-wavelength of 90 and
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Figure 4. X-ray crystallographic analysis of 14.
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Figure 5. X-ray crystallographic analysis of 17.

54 nm, respectively. Thus, the solid-state fluorescence spectra
were more bathochromic and broad compared with those in
dichloromethane due to the intermolecular interactions.

To examine the difference of fluorescence intensity of napht-
hooxazine dyes 14-22 in solid state, the X-ray crystallographic
analysis of 14, 17, and 22 was performed.?°

Figure 3 shows the X-ray crystallography of 22. In this case,
compound is arranged as a herring-bone fashion. Figure 3b
shows that molecules A and B are located almost in the same
plane. Molecules C and D are packed almost in perpendicular
for A. There are six CH/O and four CH/m interactions between
A and B. CH/N interactions are observed between A and C and
A and D. Figure 3c indicates that molecules A, E, and F are ar-
ranged toward the same direction. The interplanar distance
among A, E, and F is 3.344 A. Strong n-7 overlapping is observed
among A, E, and F as shown in Figure 3d. Thus, compound 22
has strong network m-m stacking.

In the case of compound 14, a pair of head-to-tail dimer is
formed and is arranged as slipped parallel. 6-{Perfluoro[4-
methyl-3-(1-methylethyl)-2-penten]-2-oxy} group at the 6-posi-
tion inhibits CH/O intermolecular interactions between adjacent
naphthooxazine rings. Figure 4b shows that molecule A is sur-
rounded by B, C, D, E, F, and G. Molecules A, D, and G are located
almost in the same plane. CH/F interactions are observed among
A, D, and G. Molecules A, B, and C are arranged in parallel. CH/F
interactions are observed between A and B. CH/m interactions are
observed between A and C. The interplanar distance between A
and B and A and C are 3.540 and 3.418 A, respectively. Figure
4c depicts that molecule A has strong m-m overlapping with B.
Figure 4d also shows that molecule A has m-7 interactions for
C. Thus, compound 14 has network packing.

Compound 17 is arranged as slipped parallel. A pair of
head-to-tail dimers is formed in the crystalline, being similar
to molecular packing of 14. Molecule A is surrounded by B, C,
D, E, and F as shown in Figure 5b. Molecule B is arranged in
parallel to A. There are two -7 and two CH/m interactions be-
tween A and B, there being the interplanar distance 3.395 A.
Molecules C and D are also located in parallel for A. The inter-
planar distance between A and D is 5.702 A, being too long to
have m-m interactions. Strong m-m overlapping is observed
between A and B as shown in Figure 5c. Figure 5d shows
that no m-7m overlapping is observed between A and C. One of
butyl groups of dibutylamino group at the 9-position in
A can act as a steric moiety for adjacent naphthooxiazine
molecule.

9-Dibutylamino-6-{perfluoro[4-methyl-3-(1-methylethy-I1)-2-
penten]-2-oxy}benzo[a]phenoxazin-5-one showed solid-state
fluorescence at near-infrared region (717 nm) with & 0.024,
whereas well-known naphthooxazine dye, Nile Red, does not
show fluorescence in the solid state. X-ray crystallographic anal-
ysis suggests that absence of network m-m stacking that comes
from both bulky dibutylamino group at the 9-position and per-
fluoro(alkenyloxy) group at the 6-position is essential to show
solid-state fluorescence. This is the first report of NIR solid-state
fluorescent organic dyes.

Supplementary data

Supplementary data (detailed synthetic procedure of 14-22)
associated with this article can be found, in the online version, at
doi:10.1016/j.tetlet.2008.12.081.
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Single crystals were obtained by recrystallization from ethanol. The
diffraction data were collected by using graphite monochromated Mo K
radiation (4 =0.71069 A). The structure was solved by direct methods sir97,
and refined by fill-matrix least-squares calculations. Crystal data for 14:
C9H17F17N203, Mw = 764.45, triclinic, P1, Z=2, a=8.099(6), b=12.090(11),
c=15.545(19) A, o =90.88(10)°, B =94.02(8)°, v =93.35(7)°,
Deaica=1.675gcm ™3, T=296(2)K, F000)=764, u=1.629mm!, 11,989
reflections were corrected, 4811 unique (Riy=0.0669). 4811 observed
(I>2a(I)), 536 parameters, R; =0.0849, wR; =0.2257. Crystal data for 17:
C33HysF17N,03, Mw =820.55, triclinic, P1, Z=2, a=820.55, b=11.169(6),
c=17.207(9) A, o= 90.407(9), p= 96.418(8), y= 92.857(8)°, Dcaica=1.633 g
cm3, T=123(2) K, F000)=828, p= 0.169 mm™', 13667 reflections were
corrected, 7583 unique (Rj,=0.0359). 7583 observed (I > 2c (I)), 513
parameters, R;=0.0732, wR;=0.1254. Crystal data for 22: Cy4HyN,0,,
Mw =37448, monoclinic, P21/n, Z=2, a=8.747(5), b=11.169(6),
c=17.207(9) A, o =90.407(9)°, B =96.418(8)°, 7 =92.857(8)°,
Deatca=1.633 gcm™, T=123(2)K, F000)=828, u=0.169 mm~', 13,667
reflections were corrected, 7583 unique (Riy=0.0359). 7583 observed
(I>2a(I)), 513 parameters, R, =0.0732, wR, = 0.1254. Crystallographic data
14 (CCDC 704025), 17 (CCDC 704026), and 22 (CCDC 705404)) have been
deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.
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