Geochemistry of Banded Iron Formations and their host rocks from the Central Eastern Desert of Egypt:
A working genetic model and tectonic implications.
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. . . . calcite and other Ca—rich minerals (Fig. 3g), and/ or e Elements indicative of a detrital origin are positively correlated defining 3 trends (Figs. 5d, e). .
manifested by secondary Ca—bearing minerals affected all BIFs. All BlIFs and their host rocks were a characteristic porous texture (Fig. 3h). Decp Sea Sediments
strongly deformed and metamorphosed under greenschist to epidote amphibolite facies conditions 4 I - - - e
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Geochemically, CED BIFs have higher Fe/Si compared to Algoma, Superior, or Rapitan BIF types. All — et cER & TED onrother @@i%g‘_ "l ' 3 ./ L S, Filg-_ 8: CherEistry of CED BIFs on diagrams of (a) of Peter (2003), (b) Wonder et al. (1988), and
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Al/(Al+Fe+Mn), which suggest a hydrogenous origin with hydrothermal contributions and minor detrital orphism £ sinistral | IR ] ST AR S s
component. Geochemical trends, Ho/Y, and Pr/Yb values suggest deposition of Wadi EI Dabbah BIF = _ AR N R BN P (a) 850 — 700 Ma: Subduction, island arc activity, ocean crust formation and BIF deposition
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These results lead to the conclusion that CED BIFs and their host rocks formed in small sloped or ofcore |8 [iateral . 1o . ] PR and correlations for CED BIFs. SR P T
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In 13 localities in the Egyptian CED etavolca pisolite, Abu Marwat; concentric layers of quartz with 02 e N Sy extension and Dokhan volcanism
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been classified as Algoma type BIF. Fig. 2: Stratigraphic and lithotectonic units of the Egyptian Eastern chlorite, PPL; (9) BIF with veins of epidote, XPL; (h) 0.05 0w ] MR | volcanics
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Al ' | Imra, Um Ghamis, and W. El Dabbah, whereas stilpnomelane 0 Fig. 6: (a) Geochemical = | El Imra depositional model for BIF in a silled, terraced, fore-arc basin (cf. Dickinson, 1995); SL: sea level;
glacial ice c. 750 Ma, Wh_ereas other + greenalite are restricted to the northern de OSiFt)S of Wadi 2 trends for BIFs across W. El Dabbah arrow represents upwelling of relatively anoxic waters into the oxygenated silled basin. BAB: back
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from metasomatic to V0|Canogenic Kareim -and Hadrapla. - - | | - vs. Zr and Pr/Yb. Plots ma o Yo e _ _ Gebel Hadid, Wadi El Dabbah, Wadi Kareim, and Abu Marwat, respectively.
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- El- i sieve textures and/ or patchy to oscillatory zoning (Figs. 4c - 0 o 5 i i i L :
et al., 2011, El-Shazly and Khalil | paetly y zoning (Fig 20 Nar + W. Kareim : BIFS investigated in o All BIFs have a hydrogenous origin influenced by hydrothermal solutions, and
2016). e e); and (iii) coarser-grained porphyroblasts (Fig. 49). 0o closest to the vents. this study. od Iafivel I f detrital o
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denosits and aims at understandin oriented with the banding; (ii) coarser-grained crystals £ anat n reristic of : ¢ sland Fig. 10a & b). Um N
A POSILS e CED Bl hg replacing magnetite 1l (Fig. 4h); and (i) coarse- grained | | | | signatures characteristic of an immature island arc (Fig. 10a ). Um Nar
the origin of the s In the larite i t textural ilibori ith tite 1| e PAAS normalized RE-Y concentrations for all BIEs show LREE enrichment with a few samples show some MORB affinity. All volcanic rock analyses are compatible
text of the tecton; uti : specularite in apparent textural equilibrium with magnetite Ill. | _ I BlF L . . .
context or the tectonic evoidtion © e Lepid ite + goethit theri duct samples displaying a weak + Eu anomaly; this indicates a hydrogeneous origin for these with back- and fore-arc basins (Figs. 10c & d).
H 4 th ﬁ ¢ epidocrocite = goethite are common weathering products. _ _ . . . .
the area, and the efiects o BIFs with some hydrothermal component (Fig. 7). e Fe and Si were provided by submarine hydrothermal solutions mostly on the
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Fig. 1: Simplified Geologic map of Egypt showing the locations of 13 BIFs (black), with chlorite (grey). (c) BSEI of sieve textured magnetite Il with 2.REE vs. Co + Cu + Ni plots of Peters (2003), Wonder et al. (1988), and Klein & Beukes atmospherlc O, and increasing the .C(.)ncentratlc.m of Fe. n water. .
inclusions of quartz. (d) BSEI of partially martitized magnetite Il. (e) BSEI of (1993), respectively (Figs. 8 a- ¢), ° B_”: mineral precursors were prempltated during p?t’lO(.:IS of arc quiescence,
magnetite Il with oscillatory zoning. (f) BSEI of magnetite 1l altered to triggered by upwelling of Fe?* rich hydrothermal fluids into more oxygenated
- Geologic Setting hematite. (IGIJ) Magd”e“te ”h' %agtiagy martitizvff/d,Elng 'k\)'gﬂh(P_PLEg-SI(EhI) ?35' of (b) Metavolcanic rocks layers of the small, terraced or sloped, silled basins in the fore- and back-arc
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e The Eastern Desert of Egypt exposes Precambrian basement rocks that consist of: (i) "metamorphic J ; pl . priec by £ eolloform leni M) . o > % = § areas, or in rift-related intra-arc basins. CED BIFs are non-glaciogenic in origin
- _ _ _ - . e mass of specularite, Um Nar; (j) BSEI of colloform lepidocrocite, W. Kareim. vy & ] g & o &® . , ,
core complexes” consisting of 1.8 Ga — 680 Ma migmatites and gneisses (ii) 850—700 Ma “ophiolitic o o S wl S & e Geochemical trends, Y/Ho, and Pr/YDb ratios suggest that Wadi El Dabbah BIF
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mélanges” and coeval “arc assemblages” that include volcaniclastic and volcanic rocks intercalated g7 ?go&o J O w0 g)@@ o was deposited closest to the arc, whereas Um Nar, Abu Marwat + Wadi
with epiclastic sedimentary rocks; (iii) “Older granitoids” intruded 710—610 Ma; (iv) 630-592 Ma old, V- Geochemistry of Host Rocks £ € Bl oo IE Kareim formed farthest from it, but closest to the hydrothermal vents.
high- K, calcalkalic Dokhan arc volcanic rocks, and 606-585 Ma old Hammamat molasse type (a) Metavolcaniclastic rocks IV ] s o | e Factor analysis shows 4 to 5 main factors the most prominent of which are the
sedimentary rocks that overlie units (i)—(iii); and (v) “Younger granitoids” intruded < 620 Ma (Fig. 2). } La 8 " e positively correlated Al, Mg, Y, £+ Zr = Ti factor representing detrital
e The NED is characterized by a paucity of serpentinites, abundance of post- orogenic “Younger (a) (b) 5 Ehma @ 1 B L, b | \ components, and the Fe and Si + Cu factor representing the chemical
. . . . - * ¥ G. Hadid 61 0.01 : ; o s . — ! \ .. . . .
” : + m Gharmis : 10 o s m s w 10 ' | recipitates. Correlation diagrams among the detrital factor elements show
granitoids”, and Dokhar_l volcanlcs_. The CED s predomlna_ted by ophiolitic melanges ) arc| | \ 4 umchamis .. - e - precipitate diag 9 : |
assemblages + banded iron formations. The SED is characterized by the predominance of “Older ey ¢ W Kareim | P1: immature island arc three distinct trends, which may reflect three main volcanic pulses at 828 + 5,
: < / W. Kareim (KA © © © ® .
granitoids” + gneisses and migmatites (Fig. 1). SNGD S .. % Abu Mt N P2: mature IA + VA . U Nar 772 5, and 728 £ 4 Ma (El-Shazly & Khalil, 2016).
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® BIFs and their host rocks belong to the “island arc” and “ophiolitic mélange” units (Figs. 1 & 2). Both AN P wd B r s : . * : - ?vnlsgangsh  Hydrothermal alteration manifested by secondary Ca-rich minerals was
rock types were regionally metamorphosed under greenschist to epidote amphibolite facies conditions. SN LI A: Ocearic sand arc A BTN O W ELDabbah (y localized and may have been related to either serpentinization of ultrabasic
® Metamorphic conditions range from 520 * 30°C, 5 + 2 kbar for Um Nar in the south to 400 + 50°C, 4 + e C: Continental volcanic arc RS w’ & W, Kareim bodies, or intrusion of older granitoids. However, the geochemical data
; Clel D: Passive margin A v i 7 M * Abu Marwat .. .. . :
2 kbar four Abu Marwat in the north. 5'5 " S I S . (e) oAby Manwat (A presente.d |s_|nsuff|C|ent to support e!ther conclusion. -
® The southern areas of Um Nar—Wadi El Dabbah are characterized by NE to E- verging folds (Fig. 3a), R S A A A A » s per e L e Weathering increased Fe3*/Fe?* ratios of BIFs, generally leached silica, and
whereas the northern areas of Abu Marwat — Wadi Kareim show SW-directed folds and thrusts. K Increased some of their trace element concentrations.
® The BIF layers are a few cm to 15 m thick and are interlayered with metavolcaniclastics (Fig. 3a & b). Fig. 10: Chemical characterization of metavolcanic rocks associated with CED BIFs. (a) Th/Yb vs. Nb/Yb diagram of e The geochemical data provided for the two samples from El Imra, which
® Most CED BIFs are femicrites with rhythmic banding defined by iron oxide rich layers alternating with Fig. 9: Discriminant diagrams for metavolcaniclastics. (a) and (b) La vs. Th and La — Th — Sc ternary of Bathia and Pearce (2008; 2014). (b) Ti vs. V diagram of Shervais (1982). (c) Th/Nb vs. La/Yb discriminant diagram of Hollocher suggest an intra-arc origin, are relatively enigmatic (very high Ca, Al, Y, V, Sc,
jaspilites (Fig. 3c and d). Crook (1986). (c) Trace element discriminant functions (F1 and F2) and diagram of Roser and Korsch (1988). et al. (2012). (d) Y — La — Nb diagram of Cabanis and Lecolle (1989) for metabasaltic samples. (e) — (h) Trace La, and Ce) compared to the other BIFs. More work on a larger number of
® |ithic fragments in BIF layers are rare in most deposits, but quite common in W. El Dabbah (Fig. 3d). element discriminant functions (DF1 and DF2) of Agrawal et al. (2008) for metabasaltic samples. KA: data from Ali et samples from this area is therefore needed.
al. (2009); AK: data from Mohamed Abdel Kareem (2018; pers. Comm).
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